If $\mathrm{Y} \sim \mathrm{B}(10,0.3)$ calculate
a) $P(Y=3)$
b) $P(Y<7)$
c) $P(Y \geq 2)$

Continue to Practice using the Binomial Distribution

1) Ex 2.3A - You have already completed question 1.
2) Ex 2.3B - Leave out questions 1 and 2.

Poisson Distribution

Today we are learning...
What the Poisson distribution is and how we use it.
I know if I have been successful if...
I understand what the Poisson Distribution is.
I understand the conditions that must be met to use it.
I can calculate probabilities using it.

Poisson Distribution

Like the Binomial distribution the Poisson distribution is a discrete probability distribution. We can use it under the following conditions:

1) Isolated events are occurring in continuous time or space.
2) Events are independent.
3) Events occur singly rather than in groups.
4) Events are occurring at a constant average rate per unit of time through the period of interest.
5) The random variable X is the number of events occurring per time segment.

Examples of a Poisson Distribution

1) The number of telephone calls received at a particular switchboard during business hours with an average of 8 calls every 5 minutes.
2) The number of births in a hospital per hour.
3) The number of red cars passing a point on the road outside school in 3 minutes.

Poisson Distribution

If the random variable X is said to follow a Poisson Distribution then we write $X \sim \operatorname{Po}(\lambda)$

$$
P(x=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

The number of telephone calls received at a particular switchboard during business hours is thought to be a Poisson random variable with an average of 8 calls every 5 minutes.

$$
P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

Calculate...
$P(X=4)$
$P(X=10)$
$P(X \leqslant 13)$

