Starter

1) Complete the probability distribution function.

x	4	5	6
$P(X=x)$	0.2		0.45

2) For the table above calculate $E(X)$ and $\operatorname{Var}(X)$

Today we are learning...
What the binomial distribution is and how we use it.

I will know if I have been successful if...
I know what the Binomial Distribution is.
I understand the conditions that must be met to use it.
I can calculate probabilities using it.

The Binomial Distribution

The binomial distribution is a special discrete probability distribution.

$$
P(X=x)=\left\{\begin{array}{l}
\text { If } X \sim \operatorname{Bin}(n, p) \text { then: } \\
\binom{n}{x} p^{x} q^{n-x} \text { for } x=0,1,2, \ldots, n \\
0 \text { otherwise }
\end{array}\right.
$$

$$
\text { where } 0<p<1 \text { and } q=1-p
$$

Binomial Distribution

The Binomial Distribution can be used to calculate probabilities of certain experiments. The following conditions must be met when using the binomial distribution.

1) There are a fixed number of trials, n.
2) There only two outcomes, "success" and "failure".
3) The trials are independent.
4) There is a constant probability of success p.
5) The random variable, X, is the total number of successes in n trials.

Common Examples

Common examples of experiments where the binomial distribution can be used to calculate probabilities are:
a) Flipping a coin 5 times and counting the number of heads we get.
b) Rolling a dice 8 times and counting the number of times we get an even number.
c) Picking a counter out of bag of 4 red and 3 green and getting a green 3 times when you conduct the experiment 6 times.

Let's look at the formula in more detail...

$$
\begin{gathered}
\text { If } X \sim \operatorname{Bin}(n, p) \\
P(X=x)=\binom{n}{x} p^{x} q^{n-x}
\end{gathered}
$$

Takes into account all
the different orders
in which something
can happen.

$$
\text { where } 0<p<1 \text { and } q=1-p
$$

Let's look at the formula in more detail...

$$
\begin{gathered}
\text { If } X \sim \operatorname{Bin}(n, p) \\
P(X=x)=\binom{n}{x} p^{x} q^{n-x}
\end{gathered}
$$

Calculate the probability of x successes.
where $0<p<1$ and $q=1-p$

Let's look at the formula in more detail...

$$
\begin{gathered}
\text { If } X \sim \operatorname{Bin}(n, p) \\
P(X=x)=\binom{n}{x} p^{x} q^{n-x}
\end{gathered}
$$

Calculate the probability of $n-x$ failures.
where $0<p<1$ and $q=1-p$

Expectation and Variance

It can be shown that the for a binomial distribution with, n trials and a probability of success, p or in other words $X \sim \operatorname{Bin}(n, p)$ that... $E(X)=n p$

This is given in the data booklet.
$\operatorname{Var}(X)=n p q$

For Example:
If $X \sim \operatorname{Bin}(20,0.3)$
Then $E(X)=\quad \operatorname{Var}(X)=$

Calculating Probabilities

We have 3 ways to actually calculate the probabilities.

1) Using the formula.
2) Using the tables in the data booklet.
3) Using your calculator.

Example

Suppose $X \sim \operatorname{Bin}(7,0.4)$
Calculate
$P(X=4)=0.1935$
$P(X=6)=0.0172$
$P(X \leqslant 5)=0.9812$

Ex 2.3A
Ex 2.3B

Plenary - 2017 Exam Question

A researcher is studying woodland rodents as hosts for parasite transmission. The study involves capturing, examining, marking and releasing rodents on a number of sites in the Loch Lomond basin in the West of Scotland. The theoretical chance of a recapture (capturing a rodent that has previously been marked and released), determined from previous studies, is 20%.
(a) At one site the researcher captures 20 individuals. What is the probability that exactly 3 are recaptures?
(2017)

Question		Generic scheme	Illustrative scheme	Max mark
10	(a)	- ${ }^{1}$ correct distribution -2 calculate probability	- ${ }^{1} \quad X \sim \mathrm{~B}(20,0 \cdot 2)$ -2 $\mathrm{P}(X=3)=0.2053$	2

