Starter

1. A biased, five-sided spinner is numbered with scores $2,4,6,8$ and 10 .

Let S be the score on a single spin, where $\mathrm{P}(S=s)=\frac{s}{k}$, for some constant k.
(a) Determine the value of k and hence tabulate the probability distribution of S.

Question		Generic scheme	Illustrative scheme						Max mark
1.	(a)	-1 calculate k \bullet^{2} tabulate probability distribution	$\bullet 130$ $\bullet 2$ $\bullet^{1} 3$ S						2
			$\mathrm{P}(S=s)$	1	2	1	4	$\frac{1}{3}$	
				15	15	5	15	3	

Mean \& Variance

Today we are learning...
How to calculate the mean and variance of a random variable.

I will know if I have been successful if...

I can tabulate the probability distribution of a random variable.
I can find the $E(X)$ and $E\left(X^{2}\right)$
I can find the $\operatorname{Var}(X)$

Mean \& Variance

The mean (denoted μ or $E(X)$) of the discrete random variable X is the average value that would be recorded in if an experiment was carried out.

$$
\boldsymbol{\mu}=E(X)=\sum_{\text {all } x} x p(x)
$$

Calculate $E(Y)$ for the sum of two dice.
What would we expect the sum of two dice to be?

Mean \& Variance

The variance, $V(X)$, of a discrete random variable is a measure of how spread out the recorded values of X would be if the experiment were carried out a large number of times.

Calculate the $\mathrm{V}(\mathrm{Y})$ for the sum of the two dice.

Page 34 - Exercise 2.1A
Page 36 - Exercise 2.1B

1. A biased, five-sided spinner is numbered with scores $2,4,6,8$ and 10 .

Let S be the score on a single spin, where $\mathrm{P}(S=s)=\frac{s}{k}$, for some constant k.
(a) Determine the value of k and hence tabulate the probability distribution of S.
(b) Calculate $\mathrm{E}(S)$ and $\mathrm{V}(S)$.

12. In a 'low stakes' area of a Las Vegas casino, a player pays 1 dollar to play a game where three unbiased regular octahedral dice with faces marked 1 to 8 are thrown.

- If all 3 dice show a 1 the player receives 100 dollars
- If 2 dice show a 1 the player receives 10 dollars
- If only 1 dice shows a 1 the player receives 1 dollar
- Otherwise the player receives nothing

The random variable X represents the player's profit for one game.
(a) Tabulate the probability distribution of X, with probabilities correct to 4 decimal places, and show that $\mathrm{E}(X)=-0.1029$ and $\mathrm{SD}(X)=4.8562$.

Question		Generic scheme	Illustrative scheme					Max mark 5
12.	(a)	- ${ }^{1}$ correct values of X - ${ }^{2 \& 3}$ correct probabilities -4 calculate $\mathrm{E}(X)$ - ${ }^{5}$ calculate $\operatorname{SD}(X)$	$\bullet{ }^{1-3}$					
			X	99	9	0	-1	
			$\mathrm{P}(X)$	0.0020	0.0410	0.2871	0.6699	
			$\bullet^{4} \mathrm{E}(X$	$X)=-0$	029 dol			
			\cdot^{5} SD	$X)=4$	562 dol			
Notes: Evidence of working required for \bullet^{4} and \bullet^{5}								

