Marking Instructions

Please note that these marking instructions have not been standardised based on candidate responses. You may therefore need to agree within your centre how to consistently mark an item if a candidate response is not covered by the marking instructions.

General marking principles for Advanced Higher Statistics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

The marking instructions for each question are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above
This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.

$x^{2}+5 x+7$	$=9 x+4$
$x-4 x+3$	$=0$
$(x-3)(x-1)$	$=0$
x	$=1$ or 3

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{lll}
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: •5 $x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\bullet^{6} y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
$\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1 \frac{1}{4} \quad \frac{43}{1}$ must be simplified to 43
$\frac{15}{0 \cdot 3}$ must be simplified to $50 \quad \frac{4 / 5}{3}$ must be simplified to $\frac{4}{15}$
$\sqrt{64}$ must be simplified to 8^{\star}
*The square root of perfect squares up to and including 144 must be known.
(k) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1) \text { written as } \\
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& =2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \\
& \text { gains full credit }
\end{aligned}
$$

- repeated error within a question, but not between questions or papers
(l) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(m) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(n) You should mark legible scored-out working that has not been replaced. However, if the scoredout working has been replaced, you must only mark the replacement working.
(o) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Detailed Marking Instructions for each question

Question		Generic scheme	Illustrative scheme		Max mark
$\mathbf{1 .}$	(a)		\bullet^{1} describe improvement		

| Question | | Generic scheme | Illustrative scheme | Max
 mark |
| :--- | :--- | :--- | :--- | :--- | :---: |
| 1. | (g) | \bullet state assumption | $\bullet 15$ assume that the standard
 deviations of the population
 doodle times for cats and
 dogs are equal | $\mathbf{2}$ |
| \bullet •16 correct information | •16 the sample standard
 deviations of 2.307 and 2.655 | | | |

Question			Generic scheme	Illustrative scheme	Max mark
2.	(a)		- ${ }^{1}$ appropriate comment -2 appropriate comment	-1 there is a positive relationship -2 ...but it appears to be nonlinear	2
	(b)		-3 appropriate comment - ${ }^{4}$ appropriate comment	-3 both models may be suitable -4 both have small p-values (to reject H_{0})	2
	(c)		- ${ }^{5}$ correct value -6 appropriate explanation	- ${ }^{5} \quad R^{2}=0.805$ -6 Model A explains 80% of the variation in square root of cost dependent upon the length of the yacht	2
	(d)		-7 appropriate comment - 8 appropriate comment - ${ }^{9}$ appropriate comment	-7 both plots appear to have random scatter centred on zero -8 both plots appear to have constant variance - 9 both models appear valid	3
	(e)		- ${ }^{10}$ calculate sqrt(cost) -11 calculate estimate - ${ }^{12}$ calculate interval	- ${ }^{10}$ estimated sqrt(cost) $=$ $\left\{\begin{array}{l} -204 \cdot 693+55 \cdot 437 \times 15 \\ =626 \cdot 8627 \end{array}\right.$ -11 estimated cost = $626 \cdot 8627^{2}=£ 392956$ -12 95\% Confidence interval (592•0915², 661•6342) $=(£ 350572, £ 437760)$	3
	(f)	(i)	$\bullet{ }^{13}$ appropriate reason	- ${ }^{13}$ both models are set up regressing transformed cost on length.	1
		(ii)	$\bullet{ }^{14}$ appropriate suggestion	${ }^{-14}$ He needs to design a model that has regressed length on (transformed) cost	1

[END OF MARKING INSTRUCTIONS]

Marking Instructions

Please note that these marking instructions have not been standardised based on candidate responses. You may therefore need to agree within your centre how to consistently mark an item if a candidate response is not covered by the marking instructions.

General marking principles for Advanced Higher Statistics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.

The marking instructions for each question are generally in two sections:

- generic scheme - this indicates why each mark is awarded
- illustrative scheme - this covers methods which are commonly seen throughout the marking

In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.
(a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
(b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
(c) One mark is available for each • There are no half marks.
(d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
(e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
(f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
(g) If an error is trivial, casual or insignificant, for example $6 \times 6=12$, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) below.
(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above
This error is not treated as a transcription error, as the candidate deals with the intended quadratic equation. The candidate has been given the benefit of the doubt and all marks awarded.

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

$$
\begin{array}{lll}
.5 & x=2 & x=-4 \\
.6 & y=5 & y=-7
\end{array}
$$

Horizontal: ${ }^{5} x=2$ and $x=-4 \quad$ Vertical: ${ }^{5} x=2$ and $y=5$

$$
\cdot 6 y=5 \text { and } y=-7 \quad \cdot 6 x=-4 \text { and } y=-7
$$

You must choose whichever method benefits the candidate, not a combination of both.
(j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example

$$
\begin{array}{ll}
\frac{15}{12} \text { must be simplified to } \frac{5}{4} \text { or } 1 \frac{1}{4} & \frac{43}{1} \text { must be simplified to } 43 \\
\frac{15}{0 \cdot 3} \text { must be simplified to } 50 & \frac{4 / 5}{3} \text { must be simplified to } \frac{4}{15} \\
\sqrt{64} \text { must be simplified to } 8^{\star} &
\end{array}
$$

*The square root of perfect squares up to and including 144 must be known.
(k) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:

- working subsequent to a correct answer
- correct working in the wrong part of a question
- legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
- omission of units
- bad form (bad form only becomes bad form if subsequent working is correct), for example

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}+3 x+2\right)(2 x+1) \text { written as } \\
& \left(x^{3}+2 x^{2}+3 x+2\right) \times 2 x+1 \\
& =2 x^{4}+5 x^{3}+8 x^{2}+7 x+2 \\
& \text { gains full credit }
\end{aligned}
$$

- repeated error within a question, but not between questions or papers
(I) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
(m) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
(n) You should mark legible scored-out working that has not been replaced. However, if the scoredout working has been replaced, you must only mark the replacement working.
(o) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

For example:

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

In this case, award 3 marks.

Marking Instructions for each question

Section 1

Question			Generic scheme	Illustrative scheme	Max mark
2.	(a)		- ${ }^{1}$ correct probability - ${ }^{2}$ correct probability		2
	(b)	(i)	-3 appropriate strategy - ${ }^{4}$ calculate probability	$\begin{aligned} & \bullet \frac{30}{50} \times \ldots+\frac{10}{50} \times \ldots+\frac{10}{50} \times \ldots \\ & \bullet\left(\frac{30}{50} \times 0.8+\frac{10}{50} \times 0.5+\frac{10}{50} \times 0.3\right) \\ & =0.64 \end{aligned}$	2
		(ii)	${ }^{-5}$ appropriate denominator ${ }^{\bullet 6}$ appropriate strategy -7 calculate probability	- $\frac{. .}{1-0 \cdot 64}$ - $\frac{\frac{10}{50} \times 0.5}{1-0.64}$ -7 $\frac{5}{18}$	3

Question			Generic scheme	Illustrative scheme	Max mark
4.	(a)	(i)	- ${ }^{1}$ correct strategy -2 calculate probability	$\begin{array}{ll} \bullet 1 & 1-\mathrm{P}(W \leq 10) \\ \bullet \bullet^{2} & 0.0137 \end{array}$	2
		(ii)	\bullet^{3} correct distribution - ${ }^{4}$ calculate probability	-3 $\quad F+M \sim \operatorname{Po}(3 \cdot 5)$.4 $\mathrm{P}(F+M=2)=0.1849$	2
	(b)		- ${ }^{5}$ correct strategy -6 correct approximation - ${ }^{7}$ correct strategy ${ }^{8}$ continuity correction - ${ }^{9}$ calculate probability	- $5 \quad T \sim \operatorname{Po}(357)$ -6 $\quad T \approx \mathrm{~N}(357,357)$ -7\&8 $\mathrm{P}(T<340)=\mathrm{P}\left(Z<\frac{339 \cdot 5-357}{\sqrt{357}}\right)$ - 0.1762	5

Question		Generic scheme	Illustrative scheme	Max mark
6.	(a)	${ }^{1}{ }^{1}$ state sampling method	-1 stratified random sampling	1
	(b)	$\bullet 2$ state sampling method - ${ }^{3}$ appropriate reason	$\bullet{ }^{2}$ convenience sampling - 3 it is possible that the parents who subscribe to the newsletter are particularly involved with their child's education and the selected students are therefore not representative of the population	2
	(c)	- ${ }^{4}$ correct strategy ${ }^{-5}$ calculate interval	$\begin{array}{ll} .4 & 409 \pm 1 \cdot 96 \frac{130}{\sqrt{25}} \\ .5 & (358 \cdot 0,460 \cdot 0) \end{array}$	2
	(d)	-6 start explanation -7 continue explanation	- 6458 minutes is not captured by the 90% interval but it is by the 95% interval -7 they have presented the evidence that would lead to a reward being given	2

Question		Generic scheme	Illustrative scheme	Max mark
7.	(a)	-1 ${ }^{1}$ correct probability	- $1 \frac{0.38}{5}=0.0760$	1
	(b)	$\bullet{ }^{2}$ correct mean and variance -3 approximate distribution of \bar{X} - ${ }^{4}$ appropriate justification	-2 $\mathrm{E}(X)=80 \cdot 5$ $\mathrm{V}(X)=\frac{25}{12}=2.0833$ - ${ }^{3} \quad \bar{X} \approx \mathrm{~N}\left(80 \cdot 5, \frac{1}{36}\right)$ -4 since $n \geq 20$ the CLT can be used	3
	(c)	${ }^{\bullet 5}$ appropriate strategy - ${ }^{6}$ calculate probability	. ${ }^{5} \mathrm{P}(Z \leq 1 \cdot 98)-\mathrm{P}(\mathrm{Z} \leq-0.30)$ -6 0.5940	2

Question		Generic scheme	Illustrative scheme	Max mark
8.		-1 appropriate hypotheses	$\bullet 1 \mathrm{H}_{0}: \mu=15 \quad \mathrm{H}_{1}: \mu>15$	8
		- 2 correct distribution	- $2 \bar{X} \sim \mathrm{~N}\left(15, \frac{4}{50}\right)$	
		- ${ }^{3}$ calculate z	- $\quad z=\frac{16 \cdot 1-15}{2 / \sqrt{50}}=3.89$	
		$\bullet 4$ correct critical value	- $45 \% \mathrm{cv}$ is 1.64	
		- ${ }^{5}$ deal with H_{0}	- $5 \quad 3 \cdot 89>1 \cdot 64$ so we reject H_{0} at the 5% level of significance	
		-6 appropriate conclusion	-6 conclude that there is cause for concern	
		-7 appropriate explanation	-7 the task may be too complex for the 15 -minute time limit	

Question		Generic scheme	Illustrative scheme	Max mark
9.	(a)	-1 correct expectation - ${ }^{2}$ correct variance	-1 $\mathrm{E}(C)=2 \cdot 50-1 \cdot 00=1 \cdot 50$ - $2 \mathrm{~V}(C)=4^{2}+5^{2}=41$	2
	(b)	-3 ${ }^{\text {correct }}$ description	-3 how much more profit policy A generates than policy B , for each £10 premium	1
	(c)	${ }^{\bullet 4}$ appropriate strategy ${ }^{-5}$ appropriate application of variance law - ${ }^{6}$ calculate standard deviation	$\begin{array}{ll} \hline \bullet^{4} & \text { total, } T=A_{1}+\ldots+A_{33}+B_{1}+\ldots B_{26} \\ & \\ \bullet & \mathrm{~V}(T)=\mathrm{V}\left(A_{1}\right)+\ldots+\mathrm{V}\left(A_{33}\right) \\ & +\mathrm{V}\left(B_{1}\right)+\ldots+\mathrm{V}\left(B_{26}\right) \\ & =33 \mathrm{~V}(A)+26 \mathrm{~V}(B) \\ & \\ \bullet \quad=33 \times 4^{2}+26 \times 5^{2} \\ & =1178 \\ & \Rightarrow \mathrm{SD}(T)=(£) 34 \cdot 32 \end{array}$	3

Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)	- ${ }^{1}$ correct strategy -2 appropriate substitution -3 calculate interval	-1 $\hat{p} \pm z \sqrt{\frac{\hat{p} \hat{q}}{n}}$ - $20.26 \pm 1.96 \sqrt{\frac{0.26 \times 0.74}{50}}$ -3 $\quad(0 \cdot 1384,0 \cdot 3816)$	3
	(b)	${ }^{\bullet}{ }^{4}$ correct strategy - ${ }^{5}$ appropriate substitution - ${ }^{6}$ calculate sample size	- ${ }^{4} \quad \hat{p} \pm 0.02$. $5 \quad 0.02=1.96 \sqrt{\frac{0.26 \times 0.74}{n}}$ -6 1848 shops	3

Question		Generic scheme	Illustrative scheme	Max mark
11.	(a)	\bullet appropriate comment	-1 distribution appears to be normally distributed	1
	(b)	- ${ }^{2}$ appropriate assumption - ${ }^{3}$ correct hypotheses - ${ }^{4}$ correct test statistic - ${ }^{5}$ correct z-value - ${ }^{6}$ calculate p -value - ${ }^{7}$ deal with H_{0} ${ }^{8}$ appropriate conclusion	- ${ }^{2}$ scores for workers in group B are independent of those in group C -3 $\begin{aligned} & \mathrm{H}_{0}: \mu_{B}=\mu_{C} \\ & \mathrm{H}_{1}: \mu_{B} \neq \mu_{C} \end{aligned}$ -4 $Z=\frac{\bar{X}_{B}-\bar{X}_{C}-\left(\mu_{B}-\mu_{C}\right)}{\sqrt{\frac{\sigma_{B}^{2}}{n_{B}}+\frac{\sigma_{C}^{2}}{n_{C}}}}$ $.5 z=\frac{55 \cdot 4 \cdot 51 \cdot 8}{\sqrt{\frac{10 \cdot 08^{2}}{70}+\frac{10 \cdot 49^{2}}{60}}}=1.99$ -6 $\left\{\begin{aligned} p-\text { value } & =2 \mathrm{P}(Z>1.99) \\ & =2(1-0.9767) \\ & =0.0466\end{aligned}\right.$ -7 $0.0466<0.05$, so we can reject H_{0} at the 5% level of significance -8 and conclude that there is evidence that the mean score for group B is different to that for group C	7
	(c)	- 9 correct strategy - ${ }^{10}$ correct critical value - 11 calculate maximum score	-. $z=\frac{56 \cdot 0-\bar{x}_{B}}{\sqrt{\frac{10 \cdot 71^{2}}{120}+\frac{10 \cdot 08^{2}}{70}}}$ - $10 \quad z=1.28$ -11 $\quad \bar{x}_{B}=54.01$	3

Section 2 - Part A

Question			Generic scheme	Illustrative scheme	Max mark
12.	(a)		- ${ }^{1}$ correct strategy -2 calculate interval	- $\bar{x} \pm 1 \frac{\sigma}{\sqrt{n}}$ $\cdot 2500 \pm 1 \frac{5 \cdot 73}{\sqrt{5}}=(497 \cdot 4,502 \cdot 6)$	2
	(b)	(i)	-3 calculate probability - ${ }^{4}$ correct strategy - 5 know to double ${ }^{6}$ calculate probability	-3 $P(Z>1)=0 \cdot 1587$ - $4 \quad X \sim \mathrm{~B}(3,0 \cdot 1587)$ - $5 \quad 2 \mathrm{P}(X \geq 2)$ - $6 \quad 0.1351$	4
		(ii)	${ }^{\text {•7 }}$ appropriate explanation	${ }^{-7}$ The probability is considerably larger than normal WECO thresholds so the machine will regularly meet this criteria.	1

Section 2 - Part B

Question		Generic scheme	Illustrative scheme	Max mark
13.	(a)	-1 appropriate explanation	-1 the lecturers were perhaps not equally good	1
	(b)	\bullet^{2} deal with small expected frequencies -3 calculate test statistic - ${ }^{4}$ correct critical value ${ }^{-5}$ deal with H_{0} -6 appropriate conclusion	-2 combine the last two columns so the E_{i} are now: - $X^{2}=6.055$ -4 $\chi_{3,0.90}^{2}=6 \cdot 251$ - 5 as $6.05<6.251$ we do not have evidence to reject H_{0} -6 conclude (differently) that Statistics grades awarded are independent of the course subject studied.	5
	(c)	- 7 identification consistent with previous working	-7 Biology grade D+E combined	1

[END OF MARKING INSTRUCTIONS]

