Today's Learning:

Solving quadratic equations.

$$
a \times b=0
$$

What can you say about a and b ?
Hint: Think about some examples that work.

$$
-|x|=-1
$$

How do we solve:

How do we solve:

$$
\begin{array}{r}
5 x-4=2(x-3) \\
5 x-4=2 x-6 \\
-2 x \quad-2 \\
3 x-4=-6 \\
+4=4 \\
3 x=-2 \\
x=-\frac{3}{3}
\end{array}
$$

Solving Quadratic Equations
A quadratic equation can be written as $\mathbf{a} \boldsymbol{x}^{2}+\mathbf{b} \boldsymbol{x}+\mathbf{c}=\mathbf{0}$.
Then, we can solve by factorising.
Examples:

$$
\frac{35}{5}
$$

1) $x^{2}-2 x-35=0^{5,7} 1,35$
2) $2 x^{2}+10 x=0$

$$
\begin{aligned}
& (x+5)(x-7)=0 \\
& x+5=0 \text { or } x-7=0 \\
& +7+7
\end{aligned}
$$

$$
2 x(x+5)=0
$$

$$
2 x=0 \text { or } x+5=0
$$

$$
x=0 \quad \begin{array}{ll}
x & -5 \\
& x,-5
\end{array}
$$

4) $x^{2}+6 x+8=0^{8 / / 41,2} 1,8$

$$
\begin{aligned}
& (x+3)(x-3)=0 \\
& x+3=0 \text { or } x-3=0 \\
& x=-3 \quad x=3
\end{aligned}
$$

$$
\begin{array}{crl}
(x+4)(x+2) & =0 \\
x+4=0 & \text { or } & x+2=0 \\
-4=-4 & -2 & -2 \\
x=-4 & x=-2
\end{array}
$$

$$
\begin{aligned}
& x^{2}+2 x-3=0 \\
& (x+3)(x-1)=0 \\
& \begin{array}{rrrr}
x+3 & =0 & \text { or } & x-1=0 \\
-3 & =3 & & +1
\end{array} \\
& x^{x^{3}=-3} \\
& x=1
\end{aligned}
$$

Example:
Solve $2 x^{2}+5 x+3=0$

$$
\begin{aligned}
& (2 x-1)(x+3)=0 \\
& 2 x^{2}+6 x-x-3 \quad 3 \\
& (2 x+3)(x+1)=0 \\
& 2 x^{2}+2 x+3 x+3=0 \\
& 2 x+3=0 \text { or } x+1=0 \\
& -3-3 \quad-1 \\
& 2 x=-3-2 \quad x=-1 \\
& \frac{3}{x}=\frac{-3}{2} \quad=
\end{aligned}
$$

$$
=
$$

How would we solve $\begin{aligned} & \boldsymbol{x}_{-10}^{2}+9 \boldsymbol{x}=10 \text { ? } \\ & -10\end{aligned}$

$$
\begin{array}{r}
6(x+9)=10 \\
x^{2}+9 x-10=0 \\
-x^{2}+9 x-5=0 \\
x^{2}-9 x+5=0
\end{array}
$$

Today's Learning:

To write any quadratic equation in the form $\mathbf{a} \boldsymbol{x}^{2}+\mathbf{b} \boldsymbol{x}+\mathbf{c}$
$=\mathbf{0}$ and to solve equations that don't factorise by using the quadratic formula.

$$
\begin{array}{ll}
x^{2}+9 x=2 & 2 x^{2}+3 x-2=0 \\
x^{2}+9 x-2=0 & a \quad b \quad c
\end{array}
$$

The Quadratic Formula

If we have an equation $a x^{2}+b x+c=0$ that we can't factorise, we can use the Quadratic Formula to find solutions:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\text { 1) } x^{2}-5 x-14=0
$$

$$
a=1 \quad b=-5 \quad c=-14
$$

$$
\begin{aligned}
& b=-5 \quad c=-14 \\
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4 \times 1 \times(-14)}}{2 \times 1}
\end{aligned}
$$

$$
=\frac{5 \pm \sqrt{25+56}}{2}
$$

$$
=\frac{5 \pm \sqrt{81}}{2}
$$

$$
=\frac{559}{2}
$$

$$
x=\frac{5+9}{2}=7 \quad x=\frac{5-9}{2}=-2
$$

2) $x^{2}+4 x+1=0$
$a=1 \quad b=4 \quad c=1$

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-4 \pm \sqrt{16-4 \times 1 \times 1}}{2} \\
& =\frac{-4 \pm \sqrt{16-4}}{2} \\
& =\frac{-4 \pm \sqrt{12}}{2} \\
x & =-0.27(2 d . \rho .) \quad x=-3.73(2 d \rho)
\end{aligned}
$$

Paper 1 Question
Solve

Paper 2 Question

$$
\begin{gathered}
x^{2}-11 x+24=0 \\
(x-3)(x-8)=0 \\
x-3=0 \text { or } x-8=0 \\
x=3 \quad x=8
\end{gathered}
$$

Solve the equation $3 x^{2}+9 x-2=0$.
Give your answers correct t $\$ 1$ decimal place.

Find the dimensions of the rectangle:
(5) -8

a) equation
b) $\operatorname{fin} d x$

$$
\begin{array}{rl}
(x+4) \mathrm{cm} \\
5+4=\text { an } \\
\text { Area } & =L \times B \\
36 & =(x-1)(x+4) \\
36 & \left.=x^{2}+4\right)(-x-4 \\
36 & =x^{2}+3 x-4 \\
-36 \\
0 & =x^{2}+3 x-40 \\
0 & =(x-5)(x+8) \\
& x-5=0 \text { or } x+8=0 \\
40 & x=5 \\
4,10 & x=-8 \text { not possible } \\
5,8 & x=-8 \\
1,40 &
\end{array}
$$

The area of this triangle is $14 \mathrm{~cm}^{2}$.
Find the value of a.
$(a-1) \mathrm{cm}$

$$
\text { Area }=\frac{1}{2} \times b \times h \quad \begin{aligned}
& \text { Area }=L \times B \div 2 \\
& 14=(\underbrace{(a+2)(a-1) \div 2} \times 2 \\
& \times 2 \\
& 28=a^{2}-a+2 a-2 \\
& 28=a^{2}+a-2 \\
&-28-28 \\
& 0=a^{2}+a-30 \\
& 0=(a-5)(a+6) \\
& a-5=0 \text { or } a+6=0 \\
& a=5 \quad a=-6 \\
&-6 \text { not possible } \\
& \text { so } a=5
\end{aligned}
$$

Starter
The areas of these rectangles are equal. $22 \mathrm{~N}^{2}$

$(2 x+2) \mathrm{cm}$
12

$(x+4) \mathrm{cm}$
9
a) Show that $\boldsymbol{x}^{2}-3 \boldsymbol{x}-10=0$.
b) Calculate the area of the rectangles.
b) $(x-5)(x+2)=0$

$$
\begin{gathered}
x-5=0 \text { or } x+2=0 \\
x=5 \text { or }-2
\end{gathered}
$$

$$
-2 \text { nor possible }
$$

$$
x=5
$$

$$
\begin{aligned}
& (2 x+2)(x+1)=(x+3)(x+4) \\
& 2 x^{2}+2 x+2 x+2=x^{2}+4 x+3 x+12 \\
& 2 x^{2}+4 x+2=x^{2}+7 x+12 \\
& -x^{2} \quad-x^{2} \\
& x^{2}+4 x+2=7 x+12 \\
& -12 \quad-12 \\
& x^{2}+4 x-10=7 x
\end{aligned}
$$

Today's Learning:

To find the equation of quadratic graphs using substitution of a point.

The graph of $y=k \underline{x}^{\underline{2}}$

Positive k

Negative k
$y=k x^{2}$ graph is the $y=x^{2}$ graph stretched \downarrow by a factor of k
e.g. Find the equation of the graph of the form $y=k x^{2}$

$$
\begin{aligned}
y & =k x^{2} \\
5 & =k x 1^{2} \\
5 & =k x 1 \\
\div & =k
\end{aligned}
$$

Today's Learning:
To continue to consider transformations of quadratic graphs.

q positive q

negative q
e.g. Find k and q from the graphs of $y=k x^{2}+q$:

$$
\begin{aligned}
& y=k x^{2}-1 \\
& -13=k \times 2^{2}-1 \\
& -13=k \times 4-1 \\
& -13=4 k-1 \\
& +1=k+1 \\
& -12=4 k \\
& -4 \quad \div 4 \\
& -3=k
\end{aligned}
$$

pg 3 Qt $\mathbf{g - k}$
2)

$y=k x^{2}+3$

$$
15=k \times(-2)^{2}+3
$$

$$
15=k \times 4+3
$$

$$
15=4 k+3
$$

$$
-3 \quad-3
$$

$$
y=-3 x^{2}-1
$$

$$
\begin{gathered}
12=4 k \\
3=k \\
y=3 x^{2}+3
\end{gathered}
$$

The graph of $y=(\boldsymbol{x}+p)^{\underline{2}}$

e.g. Find p for the graph of $y=(x+p)^{2}$:

$$
\begin{aligned}
& p=-6 \\
& y=(x-6)^{2}
\end{aligned}
$$

e.g. Find p and q for the graph of $y=(x+p)^{2}+q$:

$$
y=(x+5)^{2}+2
$$

(1) a) $y=(x-2)^{2}+1$

Sketching Quadratic Graphs

We can be asked to label:

- Turning Point and its nature
- Roots (where it crosses the x-axis) \checkmark
- y-intercept \checkmark
- Equation of the axis of symmetry
e.g.1) Sketch the graph of $\mathrm{y}=(\boldsymbol{x}-2)(\boldsymbol{x}+4)$

$$
\begin{aligned}
\text { Set } x & =0 \\
y & =(0-2)(0+4) \\
y & =(-2)(4) \\
& =-8 \\
\text { set } y & =0 \\
0 & =(x-2)(x+4) \\
x-2 & =0 \quad x+4=0
\end{aligned}
$$

$x=2 \quad x=-4$
$\operatorname{mininum}_{\rightarrow p} x=-1$
x axis of summetin \rightarrow look halfway between
one coots, $)(=$ that.
TP: Set $x=-1$
$\begin{aligned} y & =(-1-2)(-1+4) \\ & =(-3)(3)\end{aligned}$
$=-9$

$$
\begin{aligned}
& y=(x+1)(x+3) \quad \text { page } 5 \\
& \text { set } x=0 \\
& y=(0+1)(0+3) \quad \text { Q2a } \\
& =(1)(3) \quad \text { set } y=0 \\
& =3 \quad 0=(x+1)(x+3) \\
& x+1=0 \text { or } x+3=0 \\
& x=-1 \text { or } x=-3
\end{aligned}
$$

$$
\begin{aligned}
T P: \operatorname{set} x & =-2 \\
y & =(-2+1)(-2+3) \\
& =(-1)(1) \\
& =-1
\end{aligned}
$$

e.g. 3) Sketch the graph of $y=-(x+2)(x-2)$

Set $x=0$

$$
\begin{aligned}
y & =-(0+2)(0-2) \\
& =-(2)(-2) \\
& =-(-4) \\
& =4
\end{aligned}
$$

set $y=0$

$$
0=-(x+2)(x-2)
$$

$$
x=-2 \text { or } x=2
$$

How can we tell how many roots an equation has? $y=(x-3)^{2}+2$

$$
y=(x-4)(x+2)
$$

$$
0=(x-4)(x+2)
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad b^{2}-4 a c=0
$$

$$
0=1 x-x \quad 1
$$

$$
\begin{gathered}
b^{2}-4 a c=-v e \quad b^{2}-4 a c=+v e \text { one root } \\
\text { no coots } \\
2 \text { soluhtom }
\end{gathered}
$$

$$
\begin{array}{ll}
-4 a c & b-4 a c=0 \text { ant ion } \\
\text { no coots } & 2 \text { sol }
\end{array}
$$

The Discriminant
For a quadratic equation $a x^{2}+b x+c=0$ the discriminant is $b^{2}-4 a c$.

$$
\begin{aligned}
& b^{2}-4 a c>0 \text { means } 2 \text { real, distinct roots } \\
& b^{2}-4 a c=0 \text { means } 2 \text { real, equal roots } \\
& b^{2}-4 a c<0 \text { means no real roots }
\end{aligned}
$$

e.g. 1) Determine the nature of the roots of $2(x+1)=x^{2}-3$

$$
\begin{gathered}
2 x+2=x^{2}-3 \\
+3+3 \\
2 x+5=x^{2} \\
-x^{2}-x^{2} \\
-x^{2}+2 x+5=0 \\
a=-1 \quad b=2 \quad c=5 \\
b^{2}-4 a c \\
=4-4(-1)(5) \\
=4+20 \\
=24 \\
24>0 \text { so } \\
2 \text { real distinct } \\
\text { roots }
\end{gathered}
$$

