Solving quadratic equations.

a x b = 0

What can you say about a and b?

Hint: Think about some examples that work.

$$-|x| = -|$$

How do we solve:

How do we solve:

$$x^{2} + 2x - 3 = 0$$

$$(y + 3)(y - 1) = 0$$

$$x + 3 = 0 \quad \text{or} \quad x - 1 = 0$$

$$x + 3 = 0 \quad \text{or} \quad x - 1 = 0$$

$$x + 3 = 0 \quad \text{or} \quad x - 1 = 0$$

$$x + 3 = 0 \quad \text{or} \quad x - 1 = 0$$

$$x + 3 = 0 \quad \text{or} \quad x - 1 = 0$$

$$x + 3 = 0 \quad \text{or} \quad x - 1 = 0$$

$$x + 3 = 0 \quad \text{or} \quad x - 1 = 0$$

$$x + 3 = 0 \quad \text{or} \quad x - 1 = 0$$

Solving Quadratic Equations

A quadratic equation can be written as $\mathbf{a}x^2 + \mathbf{b}x + \mathbf{c} = \mathbf{0}$. Then, we can solve by factorising.

Examples:
$$5_{17}$$

1) $x^{2} - 2x - 35 = 0$ 1.35
(x + 5) (x - 7) = 0
x+5:0 or x-7 = 0
 5_{17}
(x + 5) (x - 7) = 0
x+5:0 or x-7 = 0
 5_{17}
(x + 5) (x - 7) = 0
(x + 7) = 0
(x + 7) = 0
(x + 7) = 0
(x + 7) = 0
(x + 7) = 0
(x

Example:

Solve
$$2x^{2}(\pm 5x)+3 = 0$$

 $(2x - 1)(x + 3) = 0$
 $2x^{2} + 6x - x - 3$
 $(2x + 3)(x + 1) = 0$
 $2x^{2} + 2x + 3x + 3 = 0$
 $2x^{2} + 2x + 3x + 3 = 0$
 $2x + 3 = 0 \text{ or } x + 1 = 0$
 $-3 - 3 \qquad -1 - 1$
 $2x = -3 \qquad x = -1$
 $= \frac{12}{2} \qquad = \frac{12}{2}$

How would we solve $x^2 + 9x = 10?$

.

$$x^{2} + 9x - 10 = 0$$

$$-\chi^{2} + 9\chi - 5 = 0$$

$$\chi^{2} - 9\chi + 5 = 0$$

To write any quadratic equation in the form $ax^2 + bx + c$ = 0 and to solve equations that don't factorise by using the **quadratic formula**.

 $x^{2} + 9x = 2$ $x^{2} + 9x - 2 = 0$

The Quadratic Formula If we have an equation $ax^2 + bx + c = 0$ that we can't factorise, we can use the Quadratic Formula to find solutions:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \quad \text{(given in exams)}$$

Examples:
1) $x^2 - 5x - 14 = 0$
 $0 = 1$ $b = -5$ $c = -14$
 $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4y | x (-14)}}{2 \times 1}$
 $= \frac{5 \pm \sqrt{25 + 56}}{2}$
 $= \frac{5 \pm \sqrt{81}}{2}$
 $x = \frac{5 \pm 9}{2}$
 $x = \frac{5 \pm 9}{2}$
 $x = \frac{5 \pm 9}{2}$
 $x = \frac{5 \pm 9}{2} = \frac{7}{2}$
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{-4 \pm \sqrt{16} - 4x | x |}{2}$
 $= \frac{-4 \pm \sqrt{16} - 4x | x |}{2}$
 $= \frac{-4 \pm \sqrt{12}}{2}$
 $x = -0.27 (2d.p.)$ $x = -3.73 (2dp)$

Paper 1 Question

Solve

$$x^{2}-11x+24=0.$$

$$(x - 3)(x - 8) = 0$$

$$x - 3 = 0 \text{ or } x - 8 = 0$$

$$x - 3 = 0 \text{ or } x - 8 = 0$$

$$x = 3 \quad x = 8 \quad x$$
Solve the equation $3x^{2} + 9x - 2 = 0.$
Give your answers correct to 1 decimal place.

Find the dimensions of the rectangle:
Area =
$$36 \text{ cm}^2$$

 $36 = (x - 1) \text{ cm}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 1) \text{ (x + 4)}$
 $36 = (x - 3 + 4)(-x - 4)$
 $36 = x^2 + 3x - 40$
 $0 = (x - 5) (x + 8)$
 $x - 5 = 0 \text{ or } x + 8 = 0$
 $x - 5 = 0 \text{ or } x + 8 = 0$
 $x = 5$
 $x = -8 \text{ not possible}$
 $1,400$
 50 x = 5

Quadratics NOTES.notebook

b) Calculate the area of the rectangles. (2x+2)(x+1) = (x+3)(x+4) $2x^{2}+2x+2x+2 = x^{2}+4x+3x+12$ $2x^{2}+4x+2 = x^{2}+7x+12$ $-x^{2} -x^{2}$ $x^{2}+4x+2 = 7x+12$ -12 -12 -12 $x^{2}+4x+2 = 7x+12$ -7x -7x -7x -7x $x^{2}-3x-10 = 0 \text{ as required.}$ b) (x - 5)(x+2) = 0 x-5 = 0 or x+2 = 0 x = 5 or -2 -2 not possible x = 5

To find the equation of quadratic graphs using substitution of a point.

e.g. Find the equation of the graph of the form $y = kx^2$

To continue to consider transformations of quadratic graphs.

a)
$$y = x + 2$$

 $y = x + 2$
 $y = x + 2$

e.g. Find p for the graph of $y = (x + p)^2$:

e.g. Find p and q for the graph of $y = (x + p)^2 + q$:

Sketching Quadratic Graphs

We can be asked to label:

- Turning Point and its nature
- Roots (where it crosses the *x*-axis) ✓
- y-intercept 🗸
- Equation of the axis of symmetry

The Discriminant

For a quadratic equation $ax^2 + bx + c = 0$ the discriminant is b² - 4ac. b² - 4ac > 0 means 2 real, distinct roots

b² - 4ac = 0 means 2 real, equal roots

 b^2 - 4ac < 0 means no real roots

e.g. 1) Determine the nature of the roots of $2(x + 1) = x^2 - 3$

$$2x+2=x^{2}-3$$

$$+3 +3$$

$$2x+5=x^{2}$$

$$-x^{2} -x^{2}$$

$$-x^{2} + 2x + 5=0$$

$$a=-1 \quad b=2 \quad c=5$$

$$b^{2}-4ac$$

$$= 4 - 4(-1)(5)$$

$$= 4 + 20$$

$$= 24$$

$$24 = 70 \quad 50$$

$$2 \text{ real distinct}$$

$$= 500 + 500$$

$$2 \text{ real distinct}$$