Prelim Examination 2006 / 2007 (Assessing Units 1 & 2)

MATHEMATICS Advanced Higher Grade

Time allowed - 2 hours

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer **all** questions.
- 3. Full credit will be given only where the solution contains appropriate working.
- 4. This examination paper contains questions graded at all levels.

All questions should be attempted

1. (a) Given
$$f(x) = e^{-2x} \tan 4x$$
, $0 < x < \frac{\pi}{8}$, obtain $f'(x)$.

(b) For
$$y = \frac{\ln 5x}{x-1}$$
, where $x > 1$, determine $\frac{dy}{dx}$ in its simplest form.

2. For what value of *t* does the system of equations

$$x + 2y - 3z = -7$$

 $4x - y + 2z = 9$
 $3x - 2y + tz = 13$

have no solution?

3. Verify that 1 - 3i is a solution of $z^4 - 4z^3 + 11z^2 - 14z - 30 = 0$.

Hence express $z^4 - 4z^3 + 11z^2 - 14z$ -30 in the form $(z + a)(z + b)(z^2 + cz + d)$, where a, b, c and d are real numbers.

4. Use the substitution $x = 3\cos\theta$ to show that

$$\int_{\frac{3}{2}}^{3} \frac{dx}{\sqrt{9 - x^2}} = \frac{\pi}{3}$$

5. Obtain the binomial expansion of
$$\left(3a^2 - \frac{4}{b}\right)^5$$
.

6. Use integration by parts to evaluate
$$\int_{0}^{1} x^{2} e^{-x} dx.$$
 5

7. Determine whether the function $f(x) = x^2 \cos x + x^3$ is odd, even or neither.

Justify your answer.

8. A spherical balloon is being inflated.

Its volume, $V \text{ cm}^3$, is increasing at the rate of $\frac{30\pi}{7} \text{ cm}^3 \text{ per second.}$

Find the rate at which the radius is increasing with respect to time when the volume is $\frac{36\pi}{5}$ cm³.

[**Note**: The volume of a sphere is given by $V = \frac{4}{3} \pi r^3$.]

- **9.** Prove that if *n* is odd then $n^4 1$ is divisible by 8.
- **10.** (a) Obtain partial fractions for

$$\frac{9}{x^2-9}$$
 2

3

5

(b) Hence evaluate

$$\int_{0}^{1} \frac{x^{2}}{x^{2} - 9} \ dx \, . \tag{4}$$

11. The function f is defined by

$$f(x) = \frac{x^2}{x+3} \quad , x \neq -3.$$

- (a) Obtain algebraically the asymptotes of the graph of f.
- (b) Find the stationary points of f and justify their nature.
- (c) Sketch the curve showing clearly the features found in (a) and (b).
- (d) Write down the coordinates of the stationary points of the graph of g(x) = 10 + |f(x)|.

- 12. The first two terms of a series are $1 + \sqrt{2}$ and $1 + \frac{1}{\sqrt{2}}$.
 - (a) If the series is arithmetic, show that the common difference is $-\frac{1}{2}\sqrt{2}$. Show also that the sum of the first ten terms is $\frac{5}{2}(4-5\sqrt{2})$.
 - (b) If the series is geometric, show that the sum to infinity exists. Show also that $S_{\infty} = 4 + 3\sqrt{2}$.
- A solid is formed by rotating the curve y = x² + 4 between x = 1 and x = t, t > 1, through 360° about the y axis.
 Find the value of t given that the volume of the solid formed is 40 π units³.

[END OF QUESTION PAPER]

Marking Scheme - Advanced Higher Grade 2006/2007 Prelim (Assessing Units 1 & 2)

	Give one mark for each ●	Illustrations for awarding each mark
1(a)	ans: $f'(x) = 2e^{-2x}(2\sec^2 4x - \tan 4x)$ 3 ma	arks
	 knows to use product rule differentiates e^{-2x} correctly differentiates tan4x 	
1(b)	ans: $\frac{dy}{dx} = \frac{x(1 - \ln 5x) - 1}{x(x - 1)^2}$ 3 ma	nrks •
	 knows to use the quotient rule differentiates correctly 	$ \frac{\frac{x-1}{x} - \ln 5x}{(x-1)^2} $
	• correct simplification for $\frac{dy}{dx}$	$\bullet \frac{x-1-x\ln 5x}{x(x-1)^2}$
2	ans: $t = \frac{31}{9}$ 5 ma	
	correct augmented matrix	$ \bullet \begin{pmatrix} 1 & 2 & -3-7 \\ 4 & -1 & 2 & 9 \\ 3 & -2 & t & 13 \end{pmatrix} $ $ \begin{pmatrix} 1 & 2 & -3-7 \\ 4 & -1 & 2 & 3-7 \end{pmatrix} $
	first modified system correct	$ \begin{pmatrix} 1 & 2 & -3-7 \\ 0 & -9 & 14 & 37 \\ 3 & -2 & t & 13 \end{pmatrix} $
	second modified system correct	$ \bullet \begin{pmatrix} 1 & 2 & -3 - 7 \\ 0 & -9 & 14 & 37 \\ 0 & -8 & t + 9 & 34 \end{pmatrix} $
	third modified system correct	$ \bullet \begin{pmatrix} 1 & 2 & -3 & -7 \\ 0 & -9 & 14 & 37 \\ 0 & 0 & t - \frac{31}{9} \frac{10}{9} \end{pmatrix} $
	• solves for <i>t</i>	$\bullet t = \frac{31}{9}$

	Give one mark for each ●	Illustrations for awarding each mark
3	ans: Proof, $(z-3)(z+1)(z^2-2z+10)$	
	 verifies that 1 - 3i is a solution knows that 1 + 3i is a solution uses 1 + 3i for substitution or synthetic division finds z² - 2z - 3 = (z - 3)(z + 1) finds z² - 2z + 10 factor 	 correct substitution or synthetic division 1 + 3i is a solution correct substitution or synthetic division z² - 2z - 3 = (z - 3)(z + 1) z² - 2z + 10
4	ans: Proof 6 marks	• $dx = -3\sin\theta \ d\theta$
	 starts substitution changes limits correctly	$\bullet \frac{3}{2} \to \frac{\pi}{3}, 3 \to 0$
	• correct substitution	$ \bullet \int_{\frac{\pi}{3}}^{0} \frac{-3\sin\theta d\theta}{\sqrt{9 - 9\cos^{2}\theta}} $
	deals with denominator	$\bullet \int_{\frac{\pi}{3}}^{0} \frac{-3\sin\theta d\theta}{3\sin\theta}$
	• correctly integrates	• $-\left[\theta\right]_{\frac{\pi}{3}}^{0}$
	• substitutes limits correctly	• $\frac{\pi}{3}$
5	ans: $243a^{10} - \frac{1620a^8}{b} + \frac{4320a^6}{b^2} - \frac{5760a^4}{b^3} + \frac{3840a^2}{b^4} - \frac{1024}{b^6}$	
	3 marks	
	correct binomial expression	• $\sum_{r=0}^{5} {5 \choose r} (3a^2)^{5-r} (\frac{-4}{b})^r$
	• correct expansion	$ (3a^{2})^{5} + 5(3a^{2})^{4} \left(\frac{-4}{b}\right) + 10(3a^{2})^{3} \left(\frac{-4}{b}\right)^{2} $ $ 10(3a^{2})^{2} \left(\frac{-4}{b}\right)^{3} + 5(3a^{2}) \left(\frac{-4}{b}\right)^{4} + \left(\frac{-4}{b}\right)^{5} $
	• correct simplification	• answer

	Give one mark for each ◆	Illustrations for awarding each mark
6	ans: $2 - 5e^{-1}$ 5 marks	
	uses integration by parts correctly	• $\left[-x^2e^{-x}\right]_0^1 + \int_0^1 2xe^{-x} dx$ • $\left[-2xe^{-x}\right]_0^1 + \int_0^1 2e^{-x} dx$
	• uses integration by parts for a second time	$\bullet \left[-2xe^{-x}\right]_{0}^{1} + \int_{0}^{1} 2e^{-x} dx$
	• integrates correctly	$\left \bullet \right - 2e^{-x} \left \frac{1}{2} \right $
	substitutes limits correctly	$\bullet -e^{-1} - 2e^{-1} - 2e^{-1} + 2e^{0}$
	correct evaluation	$\bullet 2 - \frac{5}{e}$
7	ans: Neither 3 marks	
	• knows to find $f(-x)$	• $f(-x) = (-x)^2 \cos(-x) + (-x)^3$
	• finds $f(-x)$ correctly	$\bullet f(-x) = x^2 \cos x - x^3$
	correct conclusion	Neither
8	ans: 0.35 [cm/s] 5 marks	
	• knows how find $\frac{dr}{dt}$ • finds $\frac{dr}{dV}$ correctly • finds correct formula for $\frac{dr}{dt}$ • finds correct radius • evaluates $\frac{dr}{dt}$ correctly	• $\frac{dr}{dt} = \frac{dr}{dV} \times \frac{dV}{dt}$ • $\frac{dr}{dV} = \frac{1}{4\pi r^2}$ • $\frac{dr}{dt} = \frac{15}{14r^2}$ • $r = 1.75$ • $\frac{dr}{dt} = 0.35$
9	ans: Proof 3 marks	
	• knows how to start proof : $n = 2k \pm 1$	• $n \text{ is odd} \Rightarrow n = 2k \pm 1 \ (k \in \mathbb{Z})$
	• continues proof : simplifies $n = 2k \pm 1$	$\bullet \implies n^4 - 1 = 16k^4 \pm 32k^3 + 24k^2 \pm 8k$
	• completes proof : common factor of 8	• $\Rightarrow n^4 - 1 = 8(2k^4 \pm 4k^3 + 3k^2 \pm k)$ which is divisible by 8

	Give one mark for each ●	Illustrations for awarding each mark
10(a)	ans: $\frac{3}{2(x-3)} - \frac{3}{2(x+3)}$	
	• first fraction • second fraction	$ \begin{array}{c} \bullet \frac{3}{2(x-3)} \\ \bullet -\frac{3}{2(x+3)} \end{array} $
10(b)	ans: $1 + \frac{3}{2} \ln \frac{1}{2}$	
	 4 marks divides correctly integrates correctly 	• $1 + \frac{9}{x^2 - 9}$ • $x + \frac{3}{2} \ln x - 3 - \frac{3}{2} \ln x + 3 $
	• substitutes limits correctly	$ \left(1 + \frac{3}{2} \ln \left -2 \right - \frac{3}{2} \ln \left 4 \right \right) - \left(0 + \frac{3}{2} \ln \left -3 \right - \frac{3}{2} \ln \left 3 \right \right) $
	• evaluates correctly	• $1 + \frac{3}{2} (\ln 2 - \ln 4)$
11(a)	ans: $x = -3 & y = x - 3$ 3 marks	
	 states equation of vertical asymptote divides correctly states equation of oblique asymptote 	• $x = -3$ • $f(x) = x - 3 + \frac{12}{x + 3}$ • $y = x - 3$
11(b)	ans: $(0,0) \rightarrow$ minimum turning point; $(-6,-12) \rightarrow$ maximum turning point	
	 5 marks differentiates correctly finds x-coordinates of stationary points finds y-coordinates of stationary points finds second derivative or nature table 	• $f'(x) = \frac{x^2 + 6x}{(x+3)^3}$ • $f'(x) = 0 \Rightarrow x = 0, -6$ • $(0,0) \& (-6,-12)$ • $f''(x) = \frac{(2x+6)(x+3)^2 - 2(x^2+6x)(x+3)}{(x+3)^4}$
	• correct nature of both points	• $f''(0) > 0 \Rightarrow (0,0)Min.T.P. \& f''(-6) < 0 \Rightarrow (-6,-12)Max.T.P.$

	Give one mark for each ◆	Illustrations for awarding each mark
11(c)	ans: correct graph 2 marks	
	turning points showncompletes graph	correct turning pointscorrect behaviour at asymptotes
	see graph on next page	
11(<i>d</i>)	ans: (0,10) & (-6,22) 2 marks	
	 one point correct second point correct	• (0,10) • (-6,22)
12(a)	ans: Proof 4 marks	
	 knows how to find common difference simplifies correctly knows how to find sum of first 10 terms simplifies correctly 	• $1 + \frac{1}{\sqrt{2}} - (1 + \sqrt{2})$ • $\frac{1}{\sqrt{2}} - \sqrt{2} = \frac{1 - 2}{\sqrt{2}} = \frac{-1}{\sqrt{2}}$ • $\frac{10}{2} \left[2(1 + \sqrt{2}) + (10 - 1) \left(\frac{-1}{\sqrt{2}} \right) \right]$ • $5 \left(2 + 2\sqrt{2} - \frac{9}{\sqrt{2}} \right) = \dots = \frac{5}{2} (4 - 5\sqrt{2})$
12(<i>b</i>)	ans: Proof 5 marks	
	knows to find common ratio	$\bullet \frac{1 + \frac{1}{\sqrt{2}}}{1 + \sqrt{2}}$
	finds common ratio correctly	\bullet $\frac{1}{\sqrt{2}}$
	• justifies that sum to infinity exists	$\bullet -1 < \frac{1}{\sqrt{2}} < 1$
	knows how to find sum to infinity	$\bullet \frac{1+\sqrt{2}}{1-\frac{1}{\sqrt{2}}}$
	simplifies correctly	• $\frac{\sqrt{2}+2}{\sqrt{2}-1} = \dots = 4+3\sqrt{2}$

	Give one mark for each •	Illustrations for awarding each mark
13		marks • $V = \int \pi (y-4) dy$ • $1 \rightarrow 5, t \rightarrow t^2 + 4$ • $\pi \left[\frac{y^2}{2} - 4y \right]$ • $\pi \left\{ \left(\frac{(t^2 + 4)^2}{2} - 4(t^2 + 4) \right) - \left(\frac{5^2}{2} - 4(5) \right) \right\}$ • $40\pi = \pi \left(\frac{t^4}{2} - \frac{1}{2} \right)$ • $t = 3$
	5 Solves for a confectly	

TOTAL MARKS = 74

Q11 (c)

Higher Still - 2006 / 2007

MATHEMATICS

Advanced Higher Grade – Mini Prelim (Unit 3 + Units 1/2 Revision)

Time allowed - 1 hour 20 minutes

Read Carefully

- 1. Calculators may be used in this paper.
- 2. Candidates should answer **all** questions.
- 3. Full credit will be given only where the solution contains appropriate working.
- 4. This test contains questions graded at all levels.

1. Find the general solution of the differential equation

$$x\frac{dy}{dx} + (x-2)y = x^4.$$

Given that $y = 5e^{-1}$ when x = 1, find the particular solution.

- 2. (a) Show that the matrix $A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & 0 & 2 \\ 2 & 3 & 1 \end{pmatrix}$ is non-singular. 3
 - (b) Use elementary row operations to find A^{-1} . 5
 - (c) **Hence** solve the system of equations

$$2x + y + 4z = 2$$

 $x + 2z = 3$
 $2x + 3y + z = -6$.

- 3. (a) Obtain the first five terms in the Maclaurin expansion of $(1+3x)^{\frac{5}{3}}$.
 - (b) For what values of x is this series valid?
 - (c) Use the expansion to find an approximation for $1.9^{\frac{5}{3}}$.
- **4.** (a) Express 458₆ in base 8.
 - (b) Prove by induction that n(n + 1)(n + 2) is divisible by 6 for all positive integers n.
- 5. A function y(x) is defined implicitly by $x^3 + 4xy = 3$.

Obtain formulae for
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ in terms of x and y only.

Hence evaluate
$$\frac{dy}{dx}$$
 at (1, 0) and $\frac{d^2y}{dx^2}$ at (2,-1).

6. (a) Find the point of intersection of the line L_1

$$\frac{x-6}{2} = \frac{y+2}{1} = \frac{z+7}{-3}$$

and the plane with equation 3x - y - 2z = 12.

4

(b) Find the point of intersection of the line L_1 and the line L_2

$$\frac{x-6}{-1} = \frac{y+7}{2} = \frac{z}{-2}.$$

- 7. Let $z = \frac{1}{\cos\theta + i\sin\theta}$.
 - (a) Use de Moivre's theorem to express z^5 in the form $\cos p\theta i\sin p\theta$, where p is a natural number.
 - is a natural number. 2
 - (b) Use the binomial theorem to express $\sin 5\theta$ in the form

$$q\sin\theta + r\sin^3\theta + t\sin^5\theta$$
,

and state the values of q, r and t.

5

[END OF OUESTION PAPER]

Mini Prelim (Assessing Unit 3 + Revision)

	Give one mark for each ●	Illustrations for awarding each mark
1	ans: $y = x^3 - x^2 + \frac{Cx^2}{e^x}$ 5 marks $y = x^3 - x^2 + \frac{5x^2}{e^x}$ 2 marks	6 r = 2
	 knows to find integrating factor correctly finds correct integrating factor uses integrating factor correctly uses integration by parts correctly finds general solution correctly substitutes conditions correctly finds particular solution correctly 	• $e^{\int \frac{x-2}{x} dx}$ • $\frac{e^x}{x^2}$ • $\frac{e^x}{x^2} y = \int xe^x dx$ • $xe^x - \int e^x dx$ • $y = x^3 - x^2 + \frac{Cx^2}{e^x}$ • $5e^{-1} = 1 - 1 + \frac{C}{e}$ • $C = 5$
2(a)	 ans: det A = 3 ≠ 0 3 marks knows how to find the determinant of a 3×3 matrix finds determinant correctly correct explanation 	• $\det A = \begin{vmatrix} 2 & 1 & 4 \\ 1 & 0 & 2 \\ 2 & 3 & 1 \end{vmatrix}$ • 3 • Since $ A \neq 0$, A is non-singular
2(b)		

	ans: $A^{-1} = \frac{1}{3} \begin{pmatrix} -6 & 11 & 2 \\ 3 & -6 & 0 \\ 3 & -4 & -1 \end{pmatrix}$	
		$(2 \ 1 \ 41 \ 0 \ 0)$
	• correct augmented matrix	$ \bullet \begin{pmatrix} 2 & 1 & 41 & 0 & 0 \\ 1 & 0 & 20 & 1 & 0 \\ 2 & 3 & 10 & 0 & 1 \end{pmatrix} $
	• one correct row	$ \bullet \begin{pmatrix} 0 & 1 & 01 & -2 & 0 \\ & & & & & \\ \end{pmatrix} $
	a second correct row	$ \begin{bmatrix} 0 & 0 & 1_1 & \frac{-4}{3} & \frac{-1}{3} \\ & & & & & \\ & & & & & & \\ & & & & $
	• the third row correct	$ \bullet $
	• identifies A^{-1}	$\bullet A^{-1} = \begin{pmatrix} -2 & \frac{11}{3} & \frac{2}{3} \\ 1 & -2 & 0 \\ 1 & \frac{-4}{3} & \frac{-1}{3} \end{pmatrix}$
2(c)	ans: $x = 3, y = -4, z = 0$	
	2 marks	(-6 11 2)(2)
	• knows to pre-multiply both sides by A^{-1}	$\bullet \ \frac{1}{3} \begin{pmatrix} -6 & 11 & 2 & 2 \\ 3 & -6 & 0 & 3 \\ 3 & -4 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -6 \end{pmatrix}$
	• correct solution	$\bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ -4 \\ 0 \end{pmatrix}$
3(a)	ans: $(1+3x)^{\frac{5}{3}} = 1+5x+5x^2-\frac{5}{3}x^3+\frac{5}{3}x^4$	
	4 marks	
	 evaluates f(0) & f'(0) correctly evaluates f''(0) correctly evaluates f'''(0) & f^{iv}(0) correctly 	• $f(0) = 1 \& f'(0) = 5$ • $f''(0) = 10$ • $f'''(0) = -10 \& f^{iv}(0) = 40$

	• correct expansion	Correct expansion
3(b)	ans: $ x < \frac{1}{3}$ 2 marks • knows range of validity • solves inequality	
3(c)	 ans: 2.9185 use expansion correctly correct approximation 	$ (1+3(0\cdot3))^{\frac{5}{3}} = 1+5(0\cdot3)+5(0\cdot3)^2 - $ • $ \frac{5}{3}(0\cdot3)^3 + \frac{5}{3}(0\cdot3)^4 $ • $ 2.9185 $

4(a)	ans: 266 ₈ 3 marks	
	 changes to base 10 repeated division by 8 correct answer in base 8 	 458₆ = 182 182 ÷ 8 = 22 r 6, 22 ÷ 8=2 r 6, 2 ÷ 8 = 0 r 2 266₈
4(<i>b</i>)	ans: Proof 6 marks	
	 knows how to start proof; e.g. true for n=1 assume true for n=k statement for n=k+1 continues proof: consider n odd 	 n=1:1(1+1)(1+2) = 6 which is divisible by 6 n=k:k(k+1)(k+2) [=6L] is divisible by 6 n=k+1:(k+1)(k+2)(k+3) is divisible by 6 k odd [=2m+1]-(k+1)(k+2)(k+3) =6L+3(k+1)(k+2) =6L+3(2m+2)(2m+3)
	• continues proof : consider <i>n</i> even	=6[L+(m +1)(2 m +3)] which is divisible by 6 • k even [=2 m]- (k +1)(k +2)(k +3) =6L+3(k +1)(k +2) =6L+3(2 m +1)(2 m +2)
	• completes proof	 =6[L+(2m+1)(m+1)]which is divisible by 6 Since true for n=1 and [true for n=k ⇒ true for n=k+1], the result is true for all positive integers n.
5	$\mathbf{ans:} \ \frac{dy}{dx} = \frac{-3}{4}x - \frac{y}{x}$	
	$\frac{d^2y}{dx^2} = \frac{2y}{x^2}$ $\frac{dy}{dx} = \frac{-3}{4}$ 5 marks	
	$\frac{d^2y}{dx^2} = \frac{-1}{2}$ 2 marks	
	• knows how to use implicit differentiation	$\bullet 3x^2 + 4y + 4x \frac{dy}{dx} = 0$
	differentiates correctly	$\bullet \frac{dy}{dx} = \frac{-3}{4}x - \frac{y}{x}$
	knows how to find second derivative	$\bullet \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right)$
	differentiates correctly	$\bullet \frac{-3}{4} - \left\{ -x^{-2}y + x^{-1}\frac{dy}{dx} \right\}$
	• finds simplified answer (in terms of x and y only)	$\bullet \frac{d^2y}{dx^2} = \frac{2y}{x^2}$
	 evaluates first derivative correctly evaluates second derivative correctly 	$ \begin{array}{ccc} \bullet & \frac{-3}{4} \\ \bullet & \frac{-1}{2} \end{array} $

-()		
6(<i>a</i>)	ans: (2,-4,-1) 4 marks	
		26
	• expresses x, y and z in terms of t	• $x = 2t + 6, y = t - 2, z = -3t - 7$
	• substitutes in plane equation	• $3(2t+6)-(t-2)-2(-3t-7)=12$
	• solves for <i>t</i>	\bullet $t = -2$
	• correct point	• (2,-4,-1)
6(<i>b</i>)	ans: (4,-3,-4)	
	4 marks	
	• correct system of equations	• $2t + s = 0, t - 2s = -5, -3t + 2s = 7$
	• integrates correct value for <i>t</i>	• <i>t</i> = -1
	• correct value for s	\bullet $s=2$
	• correct point	• (4,-3,-4)
		, ,
7(<i>a</i>)	ans: $z^5 = \cos 5\theta - i \sin 5\theta$	
	2 marks	
	• applies de Moivre's theorem correctly	• $\cos(-5\theta) + i\sin(-5\theta)$
	• express answer in correct form	• $\cos 5\theta - i \sin 5\theta$
7(<i>b</i>)	ans: $\sin 5\theta = 5\sin \theta - 20\sin^3 \theta + 16\sin^5 \theta$	
	q = 5, r = -20 & t = 16	
	5 marks	5
	• uses the binomial theorem correctly	$z^5 = (\cos\theta)^5 + 5(\cos\theta)^4(-i\sin\theta) +$
	,,,,,,,,	• $10(\cos\theta)^3(-i\sin\theta)^2 + 10(\cos\theta)^2(-i\sin\theta)^3 +$
	equates imaginary parts	$5(\cos\theta)(-i\sin\theta)^4 + (-i\sin\theta)^5$
	• substitutes correctly	$S(\cos\theta)(-i\sin\theta) + (-i\sin\theta)$
	• simplifies correctly	
		$\sin 5\theta = 5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta +$
		$\sin^5 \theta$
	• correct values of q, r & t.	$5(1-\sin^2\theta)^2\sin\theta-10(1-\sin^2\theta)\sin^3\theta$
	-	$+\sin^5\theta$
		• $5\sin\theta - 20\sin^3\theta + 16\sin^5\theta$
		• $q = 5, r = -20 \& t = 16$

TOTAL MARKS = 56