S2 Rounding and Estimation

Rounding to a given number of places

Counting decimal places

Decimal places are counted from the decimal point:

So, the number 5.1492 has four decimal places, while 4.34 has two decimal places.

To round a number to a given number of decimal places, look at the number in the next decimal place:

- If it's less than 5 , round down
- If it's 5 or more, round up

Example
Round 9.6371 to 2 decimal places
This means we need 2 digits after the decimal point.

Because the next digit 7 , is more than 5 , we round the 3 up. $9.6371=9.64(2$ decimal places $)$

Question

Q1. Round 7.2648 to 2 decimal places.
Q2. Round 8.352 to 1 decimal place.

To round to one decimal place, look at the number in the second decimal place. It's a 5 , so round up.

Therefore, $8.352=8.4$ (1 decimal place)

Making estimates

Rounding prices

Imagine that you are buying a T-shirt for $£ 9.99$, a pair of socks for $£ 1.49$ and a belt for $£ 8.99$. The cashier charges you $£ 23.47$. You feel that this is too much - but how do you know?

One way of finding out whether you have been over-charged is to estimate what the total amount should be. Round the different prices into easier numbers - $£ 9.99$ is approximately $£ 10, £_{1.49}$ is approximately $£ 1.50$ and $£ 8.99$ is approximately $£ 9$ - and you can do the calculation quickly in your head.
$£ 9.99+£ 1.49+£ 8.99 \approx £ 10+£ 1.50+£ 9=£ 20.50$
This is almost $£_{3}$ less than the cashier asked for, so obviously you have been over-charged.

The symbol \approx means 'approximately equal to'.

Example

By rounding the actual values to more manageable numbers, you can estimate the answers to many problems:
$£_{2.99+£_{3.10}+99 p \approx £_{3}+£_{3}+£_{1}=£_{7}, ~}^{\text {}}$
$29 \times 9 \approx 30 \times 10=300$
$61 \div 6 \approx 60 \div 6=10$

