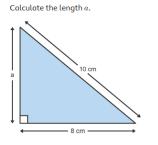
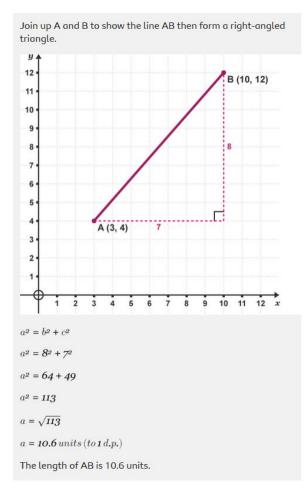

S2 Pythagoras Theorem


To calculate the length of a side on a right-angled **triangle** when you know the sizes of the other two, you need to use Pythagoras' Theorem.

Calculating the length of one of the shorter sides



sides	
	$c^2 = a^2 + b^2$
	$10^2 = a^2 + 8^2$
	$100 = a^2 + 64$
	Subtract 64 from both sides to make a^2 the subject:
	$100 - 64 = a^2$
	$36 = a^2$
	$a = \sqrt{36}$
	a = 6 cm

 $c^2 = a^2 + b^2$

Using Pythagoras with coordinates

We can also use Pythagoras to find the distance between two points.

