
15. The diagram shows a cubic curve passing through (-1, 0), (2, 0) and (0, -8).

What is the equation of the curve?

A
$$y = -2(x+1)^2(x+2)$$

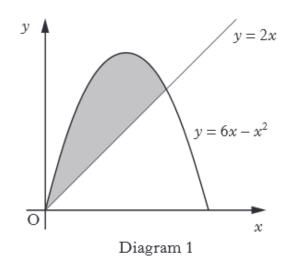
B
$$y = -2(x+1)(x-2)^2$$

C
$$y = 4(x+1)(x-2)$$

D
$$y = -8(x+1)(x-2)^2$$

17. $3x^2 + 12x + 17$ is expressed in the form $3(x + p)^2 + q$.

What is the value of q?


22. For the polynomial $6x^3 + 7x^2 + ax + b$,

- x + 1 is a factor
- 72 is the remainder when it is divided by x 2.
- (a) Determine the values of a and b.
- (b) Hence factorise the polynomial completely.

3. Functions f and g are defined on suitable domains by

$$f(x) = x(x-1) + q$$
 and $g(x) = x + 3$.

- (a) Find an expression for f(g(x)).
- (b) Hence, find the value of q such that the equation f(g(x)) = 0 has equal roots.
- Land enclosed between a path and a railway line is being developed for housing.
 This land is represented by the shaded area shown in Diagram 1.
 - The path is represented by a parabola with equation $y = 6x x^2$.
 - The railway is represented by a line with equation y = 2x.
 - · One square unit in the diagram represents 300 m² of land.

(a) Calculate the area of land being developed.

(b) A road is built parallel to the railway line and is a tangent to the path as shown in Diagram 2.

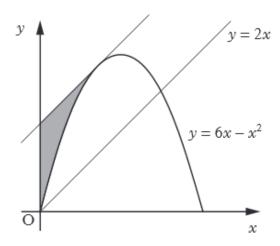


Diagram 2

It is decided that the land, represented by the shaded area in Diagram 2, will become a car park.

Calculate the area of the car park.

2013 Paper 1

- 3. Calculate the discriminant of the quadratic equation $2x^2 + 4x + 5 = 0$.
 - A -32
 - B -24
 - C 48
 - D 56
- **6.** What is the remainder when $x^3 + 3x^2 5x 6$ is divided by (x 2)?
 - A 0
 - B 3
 - C 4
 - D 8

7. Find
$$\int x(3x+2) \, dx$$
.

A
$$x^3 + c$$

$$\mathbf{B} \quad x^3 + x^2 + c$$

$$C \qquad \frac{1}{2}x^2\left(\frac{3}{2}x^2 + 2x\right) + c$$

$$D \quad 3x^2 + 2x + c$$

19. Solve $1 - 2x - 3x^2 > 0$, where x is a real number.

A
$$x < -1 \text{ or } x > \frac{1}{3}$$

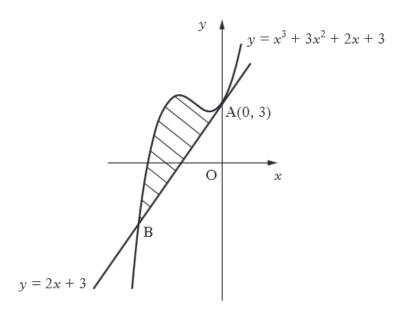
B
$$-1 < x < \frac{1}{3}$$

$$C \qquad x < -\frac{1}{3} \text{ or } x > 1$$

D
$$-\frac{1}{3} < x < 1$$

21. Express
$$2x^2 + 12x + 1$$
 in the form $a(x + b)^2 + c$.

2013 Paper 2


- 3. (a) Given that (x-1) is a factor of $x^3 + 3x^2 + x 5$, factorise this cubic fully.
 - (b) Show that the curve with equation

$$y = x^4 + 4x^3 + 2x^2 - 20x + 3$$

has only one stationary point.

Find the α -coordinate and determine the nature of this point.

4. The line with equation y = 2x + 3 is a tangent to the curve with equation $y = x^3 + 3x^2 + 2x + 3$ at A(0, 3), as shown in the diagram.

The line meets the curve again at B.

Show that B is the point (-3, -3) and find the area enclosed by the line and the curve.

7. A manufacturer is asked to design an open-ended shelter, as shown, subject to the following conditions.

Condition 1

The frame of a shelter is to be made of rods of two different lengths:

- x metres for top and bottom edges;
- y metres for each sloping edge.

Condition 2

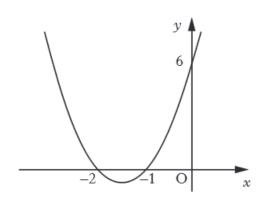
The frame is to be covered by a rectangular sheet of material.

The total area of the sheet is 24 m².

(a) Show that the total length, L metres, of the rods used in a shelter is given by

$$L = 3x + \frac{48}{x}.$$

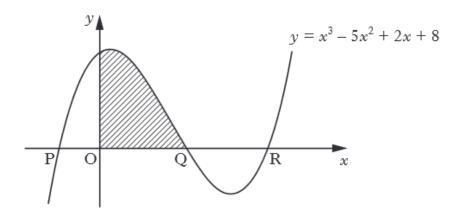
(b) These rods cost £8.25 per metre.


To minimise production costs, the total length of rods used for a frame should be as small as possible.

- (i) Find the value of x for which L is a minimum.
- (ii) Calculate the minimum cost of a frame.

2012 Paper 1

- 3. If $x^2 6x + 14$ is written in the form $(x p)^2 + q$, what is the value of q?
 - A -22
 - B 5
 - C 14
 - D 50
- 11. Find $\int \left(\frac{1}{6x^2}\right) dx$, $x \neq 0$.
 - A $-12x^{-3} + c$
 - $B -6x^{-1} + c$
 - $C \qquad -\frac{1}{3} x^{-3} + c$
 - $D \qquad -\frac{1}{6} \, x^{-1} + c$


13. A parabola intersects the axes at x = -2, x = -1 and y = 6, as shown in the diagram.

What is the equation of the parabola?

- A y = 6(x-1)(x-2)
- B y = 6(x + 1)(x + 2)
- C y = 3(x-1)(x-2)
- D y = 3(x + 1)(x + 2)
- **19.** Solve $6 x x^2 < 0$.
 - A -3 < x < 2
 - B x < -3, x > 2
 - C -2 < x < 3
 - D x < -2, x > 3

- **21.** (a) (i) Show that (x-4) is a factor of $x^3 5x^2 + 2x + 8$.
 - (ii) Factorise $x^3 5x^2 + 2x + 8$ fully.
 - (iii) Solve $x^3 5x^2 + 2x + 8 = 0$.
 - (b) The diagram shows the curve with equation $y = x^3 5x^2 + 2x + 8$.

The curve crosses the x-axis at P, Q and R.

Determine the shaded area.

2012 Paper 2

1. Functions f and g are defined on the set of real numbers by

•
$$f(x) = x^2 + 3$$

•
$$g(x) = x + 4$$
.

(a) Find expressions for:

(i)
$$f(g(x))$$
;

(ii)
$$g(f(x))$$
.

(b) Show that f(g(x)) + g(f(x)) = 0 has no real roots.

2011 Paper 1

5. If $x^2 - 8x + 7$ is written in the form $(x - p)^2 + q$, what is the value of q?

- 7. A function f is defined on the set of real numbers by $f(x) = x^3 x^2 + x + 3$. What is the remainder when f(x) is divided by (x-1)?
 - \mathbf{A}
 - **B** 2
 - C 3
 - D 4
- 9. The discriminant of a quadratic equation is 23.

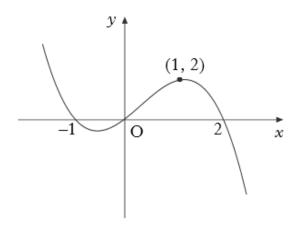
Here are two statements about this quadratic equation:

- (1) the roots are real;
- (2) the roots are rational.

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.
- 11. Find $\int \left(4x^{\frac{1}{2}} + x^{-3}\right) dx$, where x > 0.
 - A $2x^{-\frac{1}{2}} 3x^{-4} + c$
 - $\mathbf{B} \qquad 2x^{-\frac{1}{2}} \frac{1}{2}x^{-2} + c$
 - C $\frac{8}{3}x^{\frac{3}{2}} 3x^{-4} + c$
 - D $\frac{8}{3}x^{\frac{3}{2}} \frac{1}{2}x^{-2} + c$

16. Find $\int \frac{1}{3x^4} dx$, where $x \neq 0$.


$$A - \frac{1}{9x^3} + c$$

$$\mathbf{B} \quad -\frac{1}{x^3} + c$$

C
$$\frac{1}{x^3} + c$$

D
$$\frac{1}{12x^3} + a$$

17. The diagram shows the graph of a cubic.

What is the equation of this cubic?

$$A \quad y = -x(x+1)(x-2)$$

$$\mathbf{B} \quad y = -x(x-1)(x+2)$$

$$C \quad y = x(x+1)(x-2)$$

$$D \quad y = x(x-1)(x+2)$$

18. If f(x) = (x-3)(x+5), for what values of x is the graph of y = f(x) above the x-axis?

A
$$-5 < x < 3$$

B
$$-3 < x < 5$$

C
$$x < -5, x > 3$$

D
$$x < -3, x > 5$$

2011 Paper 2

2. Functions f, g and h are defined on the set of real numbers by

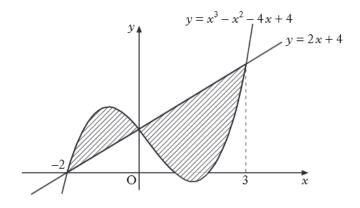
•
$$f(x) = x^3 - 1$$

$$g(x) = 3x + 1$$

•
$$h(x) = 4x - 5$$
.

(a) Find g(f(x)).

(b) Show that
$$g(f(x)) + xh(x) = 3x^3 + 4x^2 - 5x - 2$$
.

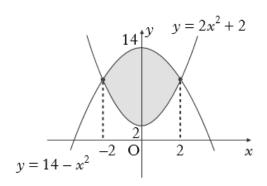

(c) (i) Show that
$$(x-1)$$
 is a factor of $3x^3 + 4x^2 - 5x - 2$.

(ii) Factorise
$$3x^3 + 4x^2 - 5x - 2$$
 fully.

(d) Hence solve
$$g(f(x)) + xh(x) = 0$$
.

4. The diagram shows the curve with equation $y = x^3 - x^2 - 4x + 4$ and the line with equation y = 2x + 4.

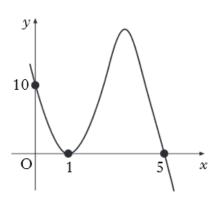
The curve and the line intersect at the points (-2, 0), (0, 4) and (3, 10).


Calculate the total shaded area.

- 5. When $x^2 + 8x + 3$ is written in the form $(x + p)^2 + q$, what is the value of q?
 - A -19
 - B -13
 - C -5
 - D 19
- **6.** The roots of the equation $kx^2 3x + 2 = 0$ are equal.

What is the value of k?

- A $-\frac{9}{8}$
- $-\frac{8}{9}$
- $C = \frac{8}{9}$
- D $\frac{9}{8}$


14. The diagram shows graphs with equations $y = 14 - x^2$ and $y = 2x^2 + 2$.

Which of the following represents the shaded area?

- A $\int_{2}^{14} (12-3x^2) dx$
- $\mathbf{B} \quad \int_{2}^{14} (3x^2 12) \, dx$
- C $\int_{-2}^{2} (12-3x^2) dx$
- $D \int_{-2}^{2} (3x^2 12) dx$

16. The diagram shows the graph with equation $y = k(x-1)^2(x+t)$.

What are the values of k and t?

$$\begin{array}{c|cccc}
 & k & t \\
A & -2 & -5 \\
B & -2 & 5 \\
C & 2 & -5 \\
D & 2 & 5
\end{array}$$

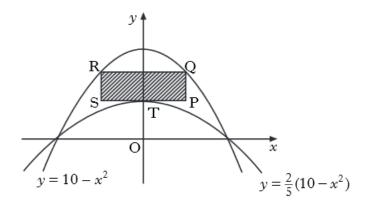
18. What is the solution of $x^2 + 4x > 0$, where x is a real number?

A
$$-4 < x < 0$$

B
$$x < -4, x > 0$$

C
$$0 < x < 4$$

D
$$x < 0, x > 4$$


- **22.** (a) (i) Show that (x-1) is a factor of $f(x) = 2x^3 + x^2 8x + 5$.
 - (ii) Hence factorise f(x) fully.
 - (b) Solve $2x^3 + x^2 8x + 5 = 0$.
 - (c) The line with equation y = 2x-3 is a tangent to the curve with equation $y = 2x^3 + x^2 6x + 2$ at the point G.

Find the coordinates of G.

(d) This tangent meets the curve again at the point H.

Write down the coordinates of H.

5. The parabolas with equations $y = 10 - x^2$ and $y = \frac{2}{5}(10 - x^2)$ are shown in the diagram below.

A rectangle PQRS is placed between the two parabolas as shown, so that:

- · Q and R lie on the upper parabola;
- RQ and SP are parallel to the x-axis;
- T, the turning point of the lower parabola, lies on SP.
- (a) (i) If TP = x units, find an expression for the length of PQ.
 - (ii) Hence show that the area, A, of rectangle PQRS is given by

$$A(x) = 12x - 2x^3.$$

(b) Find the maximum area of this rectangle.