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Advanced Higher Applied Mathematics 2009
Statistics Solutions

A1. (a) The upper and lower chart limits are given by:

x¯ ± 3
σ

n
= 50 ± 3 ×

0·4
4

= 49·4, 50·6 1

The probability that a point breaches the limits is 1P (Z > 3 or Z < −3)
1= 2 (0·0013) = 0·0026

(b) The probability that a point now plots outwith the limits is

P (Z >
50·6 − 50·5

0·2 ) + P (Z <
49·4 − 50·5

0·2 )
= P (Z > 0·5) + P (Z < −5·5) 1

= 0·3085 + 0 = 0·3085 1

We would thus expect 3 ‘out of controls’ in 10 samples 1
or 3 times in 150 minutes i.e. every 50 minutes. 1

A2. (a) The sample mean is . 1413·4 / 9 = 45·93
A 95% confidence interval is given by

x¯ ± 1·96
σ

n
1

= 45·93 ± 1·96 ×
6
9

= (42·0,49·8) 1

(b) 24/25 = 96% of intervals capture . 1µ = 45
This is close to the expected capture rate of 95%. 1

A3. (a) The product moment correlation coefficient is

r =
Sxy

SxxSyy

=
55·01

111·00 × 41·27
= 0·816 1

:   : 1H0 ρ = 0 H1 ρ ≠ 0

t =
r

1 − r2

n − 2

=
0·816
1 − 0·8162

11 − 2

= 4·23 1

The critical region for 9df at 1% level is . 1| t | > 3·25
Since 4·23 lies in the critical region, the null hypothesis
that  would be rejected at the 1% level. 1ρ = 0

(b) The correlation coefficient is an appropriate statistic 
for the first data set but not for the others. 1



A4. (a) : There is no association between serum cholesterolH0

level  and the presence or absence of heart disease.
: There is an association. 1H1

Since the p-value is less than 0·01 the null hyothesis
would be rejected at the 1% level so the data provide 1
strong evidence of an association between serum
cholesterol level and the presence or absence of heart disease. 1

(b) The expected frequencies are bracketed in the table.

1
Present Absent

< 7.00 28 (36.99) 425 (416.01)

≥ 7.00 21 (12.01) 126  (135.00)

x2
= ∑

(O − E)2

E

=
(28 − 36·99)2

36·99
+

(425 − 416·01)2

416·01

+
(21 − 12·01)2

12·01
+

(126 − 135·00)2

135·00

= 2·185 + 0·194 + 6·729 + 0·600 = 9·708 1

with 1 d.f.
Since 9·708 lies between 7·879 and 10·827 1
The p-value lies in the interval (0·001, 0·005). 1

A5. (a) The number of dogs that benefit is given by 1D ∼ B (100, 0·8)
which can be approximated by N(80, 16). 1

P (Claim rejected) = P (D ≤ 74)

≈ P (Z ≤
74·5 − 80

4 ) 1

≈ 0·0838 1

(b) B(100, 0·7) approximated by N(70, 21)

P (Claim rejected) = P (D ≥ 75)

≈ P (Z ≥
74·5 − 70

4·58 ) 1

≈ 0·1635 1



A6. (a) Proportion of deficient documents is 3/10= 0·3. 1

x¯ =
0 + 1 + 0 + 0 + 1 + 0 + 0 + 0 + 0 + 1

10
=

3
10

= 0·3 1

(b) Sample proportion .=
1
n

X1 +
1
n

X2 +
1
n

X3 + … +
1
n

Xn

E(Sample proportion)

=
1
n

E (X1) +
1
n

E (X2) +
1
n

E (X3) + … +
1
n

E (Xn) 1

=
1
n

p +
1
n

p +
1
n

p + … +
1
n

p = n ×
1
n

p = p 1

V(Sample proportion)

=
1
n2

V (X1) +
1
n2

V (X2) +
1
n2

V (X3) + … +
1
n2

V (Xn) 1

=
1
n2

pq +
1
n2

pq +
1
n2

pq + … +
1
n2

pq

= n ×
1
n2

pq =
pq

n
1

(c) Since a sample proportion may be regarded as a sample mean 
the central limit theorem indicates that a sample proportion 
will be approximately normally distributed when the sample size is large. 1

A7. (a)   Ht. Co. Rank
147 A 1
149 A 2
151 B 3
153 A 4
155 A 5
157 B 6
159 B 7
163 B 8
165 B 9
169 B 10 1

Rank sum for A is 1W = 1 + 2 + 4 + 5 = 12

(b) Number of potential subsets
10C4 = 210 1

(c) {1,2,3,4} {1,2,3,5} {1,2,3,6} {1,2,4,5} 1,1
P(Rank sum for A is less than or equal to 12)
=  4/210  =  2/105 1

(d) Since 2/105 is less than 0.05 the null hypothesis would 1
be rejected in favour of the alternative at the 5% level 1
thus furnishing evidence that the B plants appear to grow
taller than the A plants. 1



A8. (a) Let  denote battery failure during warranty period.F
 is required.P (A | F)

P (A | F) =
P (F ∩ A)

P (F)
=

P (A ∩ F)
P (F)

1

=
P (A)P (F | A)

P (A)P (F | A) + P (B)P (F | B) + P (C)P (F | C)
1

=
0·6 × 0·03

0·6 × 0·03 + 0·3 × 0·01 + 0·1 × 0·2
1

=
0·018

0·018 + 0·003 + 0·002
=

0·018
0·023

=
18
23

1

{Alternative methods such as Venn or tree diagrams are acceptable}

(b) 1B (5, 18
23)

1P (B = 3) =
5C3 (18

23)
3

( 5
23)

2

1= 0·2265

P (B | F) =
0·003

0·018 + 0·003 + 0·002
=

0·003
0·023

≈
3
23

(c)

P (C | F) =
0·002

0·018 + 0·003 + 0·002
=

0·002
0·023

≈
2
23

1

 should be allocated 0·783 × 200000 = 156600 (156522) 1A
 should be allocated 0·130 × 200000 =   26000   (26087)B
 should be allocated 0·087 × 200000 =   17400   (17391) 1C

A9. (a) An apparent superior performance by one type of tyre might 
be due to differences between drivers and not the tyres. 1

(b) The essential assumption is that the differences are normally distributed. 1

The mean and standard deviation of the differences are 0·032 and 0.026.

:   : 1H0 µd = 0 H1 µd ≠ 0

t =
d̄ − µd

sd

n

=
0·032 − 0

0·026
10

1

= 3·89 1
The critical region at the 1% level of significance with 
9 degrees of freedom is 1| t | > 3·25
Since 3·89 exceeds 3·25 the null hypothesis is rejected at the 1% level so the
data provide strong evidence of different rates of wear for the two types of tyre. 1

(c) Of the 9 non-zero differences only one is positive. 1
1P(X ≤ 1 | X  ∼B(9, 0·5)) = (1 + 9)0·59 = 0·0195

The p-value is therefore 12 × 0·0195 = 0·0390

Since the 0·01 < 0·0390 < 0·05, the sign test provides evidence, 
at only the 5% level, of different rates of wear for the two types of 
tyre, unlike the t-test which provides evidence at the 1% level. 1

[END OF STATISTICS SOLUTIONS]
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Section B Solutions

B1.

(b −
2
b)

5

= b5 + 5b4 (−2
b) + 10b3 4

b2
+ 10b2 (− 8

b3) + 5b
16
b4

−
32
b5

powers 1

coeffs 1

signs 1

= b5 − 10b3 + 40b −
80
b

+
80
b3

−
32
b5

1

B2. u = cos x ⇒ du = − sin x dx, 1

x = 0 ⇒ u = 1; x = π

3 ⇒ u = 1
2 1

Hence

∫
π/3

0
cos5 x sin x dx = − ∫

1
2

1
u5du = 

−
1
6

u6

1
2

1
1

= −
1
6

1
64

+
1
6

=
21
128

(≈ 0.164) 1

OR

∫
π/3

0
cos5 x sin x dx = 

−
1
6

cos6 x

π/3

0
3E1

= −
1
6

1
64

+
1
6

=
21
128

(≈ 0.164) 1

B3. x = t2 + 1 ⇒
dx

dt
= 2t

y = 1 − 3t3 ⇒
dy

dt
= −9t2 1

dy

dx
=

dy
dt
dx
dt

M1

=
−9t2

2t
=

−9t

2

= −9 when t = 2. 1

Point of contact is , . 1x = 5 y = −23
Equation of tangent is

(y + 23) = −9 (x − 5) 1

y + 23 = −9x + 45

y + 9x = 22



B4.
det ( ) = 1 det ( ) − 1 det ( ) + 0

1 1 0
0 k − 2 −1
1 2 k

k − 2 −1
2 k

0 −1
1 k

M1,1

= (k − 2) k + 2 − (0 + 1) 1

= k2 − 2k + 1 = (k − 1)2 = 0.

Hence the matrix does not have an inverse when . 1k = 1

B5. t
dx

dt
− 2x = 3t2

dx

dt
−

2
t
x = 3t 1

Integrating factor:  so IF . M1,1∫ −
2
t
dt = −2 ln t = ln t−2 = t−2

1
t2

dx

dt
−

2
t3

x =
3
t

x

t2
= ∫

3
t
dt 1

= 3 ln t + c

x = t2 (3 ln t + c) 1

(1,1) ⇒ c = 1 + 0

x = t2 (1 + 3 ln t) 1

B6. f (x) = x tan 2x

f ′ (x) = tan 2x + 2x sec2 2x M1,1

f ″(x) = 2 sec22x + 2 sec22x + 2x(4 sec2x(sec2x tan2x)) 2E1

= 4 sec2 2x + 8x sec2 2x tan 2x 1

= 4 sec2 2x (1 + 2x tan 2x) .

∫
π/6

0

1 + 2x tan 2x

cos2 2x
dx =

1
4 ∫

π/6

0
4 sec2 2x (1 + 2x tan 2x)dx 1,1

=
1
4
[tan 2x + 2x sec2 2x]π/6

0 1

=
1
4


3 +
π

3
22

1

=
3

4
+
π

3
.

[END OF SECTION B SOLUTIONS]


