Learning Intention

By the end of this lesson, you should be able to understand where we use differentiation and differentiate basic functions.

Differentiation belongs to an area of Mathematics called Calculus. Calculus helps us to solve problems involving motion.

Instantaneous speed is the speed of an object at an exact moment in time. It is also known as the rate of change of distance with respect to time.

Chapter 6 -- Differentiation

Examples

For each of the following find $f^{\prime}(x)$.

1) $f(x)=x^{7}$
2) $f(x)=x^{-3}$
$f^{\prime}(x)=7 x^{6}$
$f^{\prime}(x)=-3 x^{-4}$

The derivative of \boldsymbol{X}^{n}

Today's Learning:

By the end of this lesson, you should be able to differentiate any basic function using the correct notation.
$f^{\prime}(x)$ is called the derived function or the derivative of $f(x)$. The derivative of a function represents:
$*$ the rate of change of a function
\pm the gradient of the tangent to the graph of the function.

If $f(x)=x^{n}$, then $f^{\prime}(x)=n x^{n-1}$, where n is a rational number.

$$
\text { xby power, reduce power by } 1
$$

Starter

When $2 x^{2}+8 x-3$ is written in the form $a(x+b)^{2}+c$ the values of a, b and c are $2\left(x^{2}+4 x-3 / 2\right)$

	a	b	c
\mathbf{A}	2	2	-3
\mathbf{B}	2	2	-7
\mathbf{C}	2	2	-11
\mathbf{D}	2	2	7

$$
\begin{array}{c|c|c|c|}
\hline \text { D } & 2 & 2 & 7 \\
\left.2(x+2)^{2}-5 \cdot 5\right) & 2\left(x^{2}+4 x+4\right)-11 \\
& 2(x+2)^{2}-11 & 2 x^{2}+8 x-3
\end{array}
$$

3) $f(x)=x^{\frac{7}{2}}$
4) $f(x)=\frac{3}{x^{2}}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{7}{2} x^{\frac{5}{2}} \\
& f(x)=3 x^{-2} \\
& f^{\prime}(x)=-6 x^{-3} \\
& f^{\prime}(x)=-2(3) x^{-3} \\
& f^{\prime}(x)=\frac{-6}{x^{3}}
\end{aligned}
$$

Other Notation

Today's Learning:
By the end of this lesson, you should able to recognise other notation involved with differentiation.
For an expression in the form $y=\ldots$, the derivative with respect to
$x_{\text {is expressed as } \frac{d y}{d x}}$.

To find the derivative of an expression in x with respect to x, the notation used is $\frac{d}{d x}$
5)
5) $\begin{aligned} f(x) & =\sqrt{x} \\ & =X^{1 / 2}\end{aligned}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{2} x^{-1 / 2} \\
& =\frac{1}{2 x^{1 / 2}} \\
& =\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

Ex 60

2. The first rule:
3. The second rule: $\quad\left(a^{m}\right)^{n}=a^{m n}$
4. The third rule: $\quad a^{m} \div a^{n}=a^{m-n}$
5. The fourth rule: $\quad a^{0}=1$
6. The fifth rule: $\quad a^{-1}=\frac{1}{a}$ and $a^{-m}=\frac{1}{a^{m}}$
7. The sixth rule: $\quad a^{\frac{1}{2}}=\sqrt{a}$ and $a^{\frac{1}{4}}=\sqrt[a]{a} \quad \frac{3}{3}$
8. A final result: $\frac{2}{3} \rightarrow \frac{a^{\frac{p}{a}}=\left(a^{p}\right)^{\frac{1}{i}}=\sqrt[a]{a^{p}},}{x^{\frac{2}{3}} x^{-1 / 3} 6 x \rightarrow 6}$
$\begin{aligned} x \rightarrow 1 & =\frac{2}{3 x^{1 / 3}} \quad 17 \rightarrow 0 \\ 5 \rightarrow 0 & =\frac{2}{3 \sqrt[3]{x}}\end{aligned}$

Examples

1) $y=x^{-\frac{1}{3}}$
$x^{-\frac{4}{3}}=\frac{1}{x^{4 / 3}}$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{-1}{3} x^{-4 / 3} \\
& =\frac{-1}{3 x^{4 / 3}} \\
& =\frac{-1}{3 \sqrt[3]{x^{4}}}
\end{aligned}
$$

2) Find the derivative of $x^{\frac{3}{2}}$ with respect to x.

$$
\frac{d}{d x}\left(x^{\frac{3}{2}}\right)=\frac{3}{2} x^{1 / 2}
$$

Rate of Change

Today's Learning:
By the end of this lesson, you should be able to calculate rate of change.

The rate of change of a function, $f^{\prime}(x)$, can be evaluated for any value of x.

Examples

1) Given $f(x)=x^{5} \quad$ for $x \in \mathrm{R}, \quad$ find the rate of change of $f_{\text {when }} x=3$.

$$
\begin{aligned}
f(x) & =x^{5} \\
f^{\prime}(x) & =5 x^{4} \\
f^{\prime}(3) & =5 \times 3^{4} \\
& =5 \times 81 \\
& =405
\end{aligned}
$$

3) The value of an investment is calculated using $V(t)=t^{2}$
V is value and t is time.
Calculate the growth rate (rate of change) after 9 years.

$$
\begin{aligned}
& V(t)=t^{2} \\
& V^{\prime}(t)=2 t \\
& V^{\prime}(9)=2 \times 9=18
\end{aligned}
$$

Differentiating more than one term and $a x^{n}$

Today's Learning:

By the end of this lesson, you should be able to differentiate expressions with more than one term.

To differentiate more than one term, just differentiate each term separately.
2) If $f(x)=x^{-4} \quad$ for $x \in \mathrm{R}, \quad$ find $f^{\prime}(2)$.

$$
\begin{aligned}
& f(x)=x^{-4} \\
& \begin{array}{ll}
f^{\prime}(x)=-4 x^{-5} & \\
f^{\prime}(2)=-4 \times 2^{-5}
\end{array} \quad f^{\prime}(x)=\frac{-4}{x^{5}} \\
& =-4 \times \frac{1}{2^{5}} \quad f^{\prime}(2)=\frac{-4}{2^{5}} \\
& =-4 \times \frac{1}{32} \\
& =-\frac{1}{8} \\
& =\frac{-4}{32} \\
& =\frac{-1}{8}
\end{aligned}
$$

4) Smoke from a factory chimney travels $\sqrt{t} \mathrm{~km}$ in t hours. Calculate the speed (rate of change) of the smoke after 4 hours.

$$
\begin{aligned}
d(t) & =\sqrt{t} \\
& =t^{\frac{1}{2}} \\
d^{\prime}(t) & =\frac{1}{2} t^{-1 / 2} \\
& =\frac{1}{2 t^{1 / 2}} \\
& =\frac{1}{2 \sqrt{t}} \\
d^{\prime}(4) & =\frac{1}{2 \sqrt{4}} \\
=\frac{1}{2 \times 2} & =\frac{1}{4} \text { km/howl }
\end{aligned}
$$

Examples

1) A function is defined for $x \in \mathrm{R}$ by $f(x)=3 x^{4}$

Find $f^{\prime}(x)$.

$$
f^{1}(x)=12 x^{3}
$$

2) A function is defined for $x \in \mathrm{R}$ by $f(x)=3 x^{3}-2 x^{2}+5 x$

Find $f^{\prime}(x)$.

$$
f^{\prime}(x)=9 x^{2}-4 x+5
$$

4) Differentiate $y=\frac{1}{2 x^{3}}$ with respect to x.

$$
\begin{aligned}
y= & \frac{1}{2} x^{-3} \\
\frac{d y}{d x} & =\frac{-3}{2} x^{-4} \\
& =\frac{-3}{2 x^{4}}
\end{aligned}
$$

Differentiating more complex expressions

Today's Learning:
By the end of this lesson, you should be able to differentiate more complex expressions.

Before differentiating a function we have to express it as a sum of individual terms.

Examples

1) Find $\frac{d y}{d x}$ when $y=(x-3)(x+2)$

$$
\begin{aligned}
y & =x^{2}+2 x-3 x-6 \\
& =x^{2}-x^{1}-6 \\
\frac{d y}{d x} & =2 x-1
\end{aligned}
$$

3) Differentiate $y=2 x^{4}-4 x^{3}+3 x^{2}+6 x+2$ with respect to x.

$$
\frac{d y}{d x}=8 x^{3}-12 x^{2}+6 x+6
$$

Starter

Write the following in the form $a(x+b)^{2}+c$

1) $2 x^{2}-8 x+20$
2) $2 x^{2}+12 x+9$
3) $3 x^{2}-6 x+1$
4) $2 x^{2}-6 x+7$
5) Differentiate $\frac{x^{4}-3 x^{2}}{5 x}$ with respect to x.

$$
\begin{aligned}
\frac{x^{4}-3 x^{2}}{5 x} & =\frac{x^{4}}{5 x}-\frac{3 x^{2}}{5 x}=\frac{x^{3}}{5}-\frac{3 x}{5} \\
& =\frac{1}{5} x^{3}-\frac{3}{5} x \\
\frac{d}{d x} & =\frac{3}{5} x^{2}-\frac{3}{5}
\end{aligned}
$$

Starter
When $\frac{x^{2}}{\sqrt{x}}$ is differentiated with respect to x, the result is
$\frac{x^{2}}{x^{1 / 2}}$
A. $\frac{5}{2} x^{\frac{3}{2}} \quad \frac{d}{d x}=\frac{3}{2} x^{1 / 2}$
$x^{3 / 2}$
C. $\frac{1}{2} x^{\frac{1}{2}}$
D. $\frac{2}{5} x^{\frac{5}{2}}$
4) Find the derivative of $y=\sqrt{x}\left(x^{2}+\sqrt[3]{x i}\right)$ wot x.

$$
\begin{aligned}
& y=x^{\frac{1}{2}}\left(x^{2}+x^{\frac{1}{3}}\right) \\
& y=\sqrt{x}\left(x^{2}+\sqrt[3]{x}\right) \quad \frac{1}{2}+\frac{1}{3} \\
& y=x^{\frac{1}{2}}\left(x^{2}+x^{\frac{1}{3}}\right)=\frac{3}{6}+\frac{2}{6} \\
&=x^{\frac{5}{2}}+x^{\frac{5}{6}} \quad
\end{aligned} \quad \frac{d y}{d x}=\frac{5}{2} x^{3 / 2}+\frac{5}{6} x^{-1 / 6} .
$$

Applications of Derivatives
(More complex Rate of Change)
Today's Learning:
By the end of this lesson, you should be able to apply differentiation to solve real life problems.
3) Differentiate $\frac{x^{3}+3 x^{2}-6 x}{\sqrt{x}} \rightarrow \frac{x^{3}+3 x^{2}-6 x}{x^{1 / 2}}$

$$
\begin{aligned}
\frac{x^{3}+3 x^{2}-6 x}{\sqrt{x}} & =\frac{x^{3}}{x^{\frac{1}{2}}}+\frac{3 x^{2}}{x^{\frac{1}{2}}}-\frac{6 x}{x^{\frac{1}{2}}} \\
{[} & =x^{3-\frac{1}{2}}+3 x^{2-\frac{1}{2}}-6 x^{1-\frac{1}{2}} \\
& =x^{\frac{5}{2}}+3 x^{\frac{3}{2}}-6 x^{\frac{1}{2}} \\
\frac{d}{d x} & =\frac{5}{2} x^{\frac{3}{2}}+\frac{9}{2} x^{\frac{1}{2}}-3 x^{-\frac{1}{2}} \\
& =\frac{5}{2} \sqrt{x}+\frac{9}{2} \sqrt{x}-\frac{3}{\sqrt{x}}
\end{aligned}
$$

Starter

Differentiate the following with respect to x :

1) $f(x)=3 x^{2}+\frac{1}{x}=3 x^{2}+x^{-1}$

$$
f^{\prime}(x)=6 x-x^{2}=6 x-\frac{1}{x^{2}}
$$

2) $y=2 x^{4}-5 x^{3}+\frac{1}{2} x^{2}+3 x-12$

$$
\frac{d y}{d x}=8 x^{3}-15 x^{2}+x+3
$$

3) $f(x)=x+\frac{1}{x}+\frac{3}{x^{2}}-\frac{1}{5 x^{3}}$

$$
\begin{aligned}
& =x+x^{-1}+3 x^{-2}-\frac{1}{5} x^{-3} \\
& =1-x^{-2}-6 x^{3}+\frac{3}{5} x^{4} \\
& =1-\frac{1}{x^{2}}-\frac{6}{x^{3}}+\frac{3}{5 x^{4}}
\end{aligned}
$$

Examples

1) A ball is thrown so that its displacement s after t seconds is given by $s(t)=12 t-5 t^{2}$
Find the rate of change after 2 seconds.

$$
\begin{aligned}
s^{\prime}(t) & =12-10 t \text { Erateof change } \\
s^{\prime}(2) & =12-10 \times 2 \\
& =12.20 \\
& =-8
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) If } \begin{aligned}
& y=\frac{1}{x^{\frac{2}{3}}} \text {, calculate the rate of change of } y \text { when } x=8 . \\
& y=x^{-2 / 3} \\
& \frac{d y}{d x}=-\frac{2}{3} x^{-5 / 3} \\
&=-\frac{2}{3} \frac{1}{x^{3 / 3}} \\
&=\frac{-2}{3 x^{3 / 3}} \\
&=\frac{-2}{3 \sqrt[3]{x^{5}}}
\end{aligned}
\end{aligned}
$$

rate of change for $x=8$:

$$
\frac{-2}{3 \sqrt[3]{8^{5}}}=\frac{-2}{3 \times 2^{5}}=\frac{-2}{3 \times 32}
$$

$$
=\frac{-2}{96}=\frac{-1}{48}
$$

Starter

Given the graph $f(x)$, draw the graph

Examples

1) Find the equation of the tangent to the curve with equation $y=x^{2}-3$ at the point $(2,1)$

$$
\begin{aligned}
& \frac{d y}{d x}=2 x \\
& \text { At }(2,1), m=2 \times 2=4 \\
& y=m(x-a) \\
& y-1=4(x-2) \\
& y=1=4 x-8 \\
& y-4 x+7=0
\end{aligned}
$$

3) A function f is defined for $x>0$ by $f(x)=\frac{1}{x}$,

Find the equation of the tangent to the curve $y=f(x)$ at P .
At $P, x=\frac{1}{2}$
$f(x)=\frac{1}{x}$
$f\left(\frac{1}{2}\right)=\frac{1}{1 / 2}=2$

$$
(1 / 2,2)
$$

$y-b=m(x-a)$
$y-2=-4\left(x-\frac{1}{2}\right)$
$y-2=-4 x+2$
$y+4 x-4=0$

$$
\begin{aligned}
& f(x)=x^{-1} \\
& f^{\prime}(x)=-x^{-2}=\frac{-1}{x^{2}} \\
& \begin{aligned}
f^{\prime}\left(\frac{1}{2}\right) & =-\left(\frac{1}{2}\right)^{-2} \\
& =\frac{-1}{\left(\frac{1}{2}\right)^{2}} \\
& =\frac{-1}{1 / 4} \\
& =-4
\end{aligned}
\end{aligned}
$$

Exercise 6J
4) The gradient of a tangent to the curve $y=x^{4}+1$ is 32

Find the point of contact of the tangent.

$$
\begin{aligned}
\frac{d y}{d x}=4 x^{3} & =32 \\
x^{3} & =8 \\
x & =2 \\
y & =2^{4}+1 \\
& =16+1 \\
& =17
\end{aligned}
$$

A designer of an artificial ski slope describes the shape of the slope by the function

Calculate the gradient of the slope 4 m horizontally from the start of the slope.

$$
h^{\prime}(4)=\frac{2}{\sqrt{4}}-2
$$

$$
=\frac{2}{2}-2
$$

$$
=-1
$$

$$
\begin{aligned}
& =4 d^{1 / 2}-2 d \\
h^{\prime}(d) & =2 d^{-1 / 2}-2 \\
& =\frac{2}{d^{1 / 2}}-2 \\
& =\frac{2}{\sqrt{d}}-2
\end{aligned}
$$

Starter

A curve has equation $y=3 x^{2}-7 x-2$.
What is the gradient of the tangent at the point where $x=3$?
A 3
B 4
C 9
(D 11

$$
\begin{aligned}
& \frac{d y}{d x}=6 x-7 \\
& \text { where }=3 \\
& m=18-7 \\
& m=1
\end{aligned}
$$

Continue Ex 6J

Increasing and Decreasing Functions

Today's Learning:
By the end of this lesson, you should be able to determine whether a function is increasing or decreasing.

When a curve is increasing, the tangents will slope upwards, the gradients are positive, so $\frac{d y}{d x}>0$

When a curve is decreasing, the tangents will slope downwards, the gradients are negative, so $\frac{d y}{d x}<0$

Examples

1) Find the intervals for which the function $y=3 x^{2}+2 x-5$ is increasing and decreasing.

$$
\begin{aligned}
\begin{aligned}
& \text { Function is increasing when } \\
& \frac{d y}{d x}>0 \\
& \frac{d y}{d x}=6 x+2 \\
& 6 x+2>0 \\
& 6 x>-2 \\
& x>-\frac{1}{3}
\end{aligned} & \begin{aligned}
\text { Function is decreasing when } \\
d x
\end{aligned} 0
\end{aligned}
$$

2) Find the intervals for which the function $f(x)=x^{3}-3 x^{2}+8$ is increasing and decreasing.

Function is increasing when
Function is decreasing when $f^{\prime}(x)>0$
$f^{\prime}(x)<0$

$$
f^{\prime}(x)=3 x^{2}-6 x
$$

$$
f^{\prime}(x)=3 x^{2}-6 x
$$

$3 x^{2}-6 x>0$
$3 x(x-2)>0$
$3 x^{2}-6 x<0$
$3 x(x-2)<0$

$$
\begin{gathered}
\text { increasing } \\
x<0 \quad \text { or } x>2
\end{gathered}
$$

decreasing

$$
0<x<2
$$

3) Show that the function $f(x)=x^{3}-3 x^{2}+3 x-10$ is never decreasing.
Function is not decreasing if $f^{\prime}(x) \geq 0$

$$
\begin{aligned}
& \qquad \begin{aligned}
& f^{\prime}(x)=3 x^{2}-6 x+3=3\left(x^{2}-2 x+1\right) \\
&=3\left(x^{2}-2 x+1\right)=3(x-1)(x-1) \\
&=3(x-1)^{2}=3(x-1)^{2}
\end{aligned}
\end{aligned}
$$

$3(x-1)^{2} \geq 0$ for all values of x, so the function is never decreasing.

Example

1) Find the stationary points and determine the nature of $y=4 x^{3}-x^{4}$ side of it.

Today's Learning:
By the end of this lesson, you should be able to find stationary points and determine their nature.

Stationary points occur when $f^{\prime}(x)=0$.

The nature of a stationary point depends on the gradient on either

$$
y=4 x^{3}-x^{4} \quad \frac{d y}{d x}=12 x^{2}-4 x^{3} \quad(0,0)(3,27)
$$

$$
\begin{aligned}
& x=-2 \\
& \frac{d y}{d x}=12 \times 4-4 x-8 \\
&=48+32 \\
& x=1 \\
& d y / d x=12 \times 1-4 \times 1 \\
&=12-4=8
\end{aligned}
$$

x	3	3	3^{+}
$\frac{d y}{d x}$	+	0	-
Slope	7	-	1

$$
\begin{aligned}
& x=5 \\
& d y=12 \times 25-4 \times 125 \\
&=300-500
\end{aligned}
$$

so, $(0,0)$ is a rising point of inflection.
$(3,27)$ is a max turning point.

Curve Sketching

Today's Learning:
By the end of this lesson, you should be able to sketch and fully annotate a curve.

```
To sketch a curve we need
* the }y\mathrm{ intercept
* the }x\mathrm{ intercept
* the stationary points and their nature.
```


Ex 6M

Step 1 Differentiate

Step 2 Set equal to 0 and solve
Step 3 Sub in the x coordinate into original equation ($y=\ldots .$.) and find the y coordinate.

Step 4 Find the nature
Step 5 State coordinates and their nature

Examples

1) Sketch the curve $y=x^{3}-3 x^{2}$

Step 1 - Find where the graph cuts the y axis.
When $x=0, \quad y=0^{3}-3 \times 0^{2}$

$$
\begin{equation*}
y=0 \tag{0,0}
\end{equation*}
$$

Step 2 - Find where the graph cuts the x axis.
When $y=0, \quad x^{3}-3 x^{2}=0$

$$
\begin{array}{rlrl}
x^{2}(x-3) & =0 & & \\
\text { Either } x^{2} & =0 & \text { or } & \\
x-3=0 \\
x & =0 & & x=3
\end{array}
$$

$(0,0)$ and $(3,0)$

Step 3 - Find the stationary points

$$
\begin{aligned}
& \text { sPs occur when } \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=3 x^{2}-6 x \\
& 3 x^{2}-6 x=0 \\
& 3 x(x-2)=0
\end{aligned}
$$

$$
\text { Either } \begin{aligned}
3 x & =0 & \text { or } & x-2=0 \\
x & =0 & & x=2
\end{aligned}
$$

$$
\text { When } x=0, \quad y=0^{3}-3 \times 0^{2}
$$

$$
\begin{equation*}
y=0 \tag{0,0}
\end{equation*}
$$

When $x=2, \quad y=2^{3}-3 \times 2^{2}$

Step 4 - Determine the nature of the SSs.

$$
\frac{d y}{d x}=3 x^{2}-6 x
$$

Step 5 - Sketch the graph.

Ex 6 N

Step 3 - Find the stationary points.

GPs occur when | $\frac{d y}{d x}$ | $=0$ |
| ---: | :--- |
| $\frac{d y}{d x}$ | $=6 x^{2}-6 x-12$ |
| $6 x^{2}-6 x-12$ | $=0$ |
| $6\left(x^{2}-x-2\right)$ | $=0$ |
| $6(x+1)(x-2)$ | $=0$ |

$$
\text { Either } \quad x+1=0 \quad \text { or } \quad x-2=0
$$

$$
x=-1 \quad x=2
$$

$$
\text { When } \begin{aligned}
x=-1, \quad y & =\left(2 \times(-1)^{3}\right)-\left(3 \times(-1)^{2}\right)-(12 \times-1)+5 \\
y & =12
\end{aligned}
$$

When $x=2, \quad y=\left(2 \times 2^{3}\right)-\left(3 \times 2^{2}\right)-(12 \times 2)+5$
$y=-15$
($-1,12$) and ($2,-15$)

Step 5 - Sketch the graph.
so, $(-1,12)$ is a max turning point
$(2,-15)$ is a min turning point $(0,5)$

Starter

03/10/17

1. Given $f(x)=3 x^{2}(2 x-1)$, find $f^{\prime}(-1)$.

$$
\begin{align*}
f^{\prime}(x) & =18 x^{3}-3 x^{2}-6 x \tag{3}\\
f^{\prime}(-1) & =18(-1)^{2}-6(-1) \\
& =18-(-6)=24
\end{align*}
$$

03/10/17

Closed Intervals

Learning Intention
By the end of this lesson, you should be able to find the maximum and miniumum values of a function within a closed interval.
We can restrict the part of a graph we are looking at using a closed interval. The maximum and minimum values can be at stationary points or at end points of the closed interval.

Below is a sketch of a curve, with the closed interval $-2 \leq x \leq 6$ shaded.

When $x=-\frac{1}{3}, \quad y=2 x^{3}-5 x^{2}-4 x+1$

$$
\begin{aligned}
& =-\frac{2}{27}-\frac{5}{9}+\frac{4}{3}+1 \\
& =\frac{46}{27}
\end{aligned}
$$

When $x=2$,

$$
\begin{aligned}
& y= 2 x^{3}-5 x^{2}-4 x+1 \\
&=\left(2 \times 2^{3}\right)-\left(5 \times 2^{2}\right)-(4 \times 2)+1 \\
&=-11 \\
& \quad\left(-\frac{1}{3}, \frac{46}{27}\right) \text { and }(2,-11)
\end{aligned}
$$

Step 3: Find the extremities by substituting in x coordinates

$$
f(x)=2 x^{3}-5 x^{2}-4 x+1 \quad-1 \leq x \leq 4
$$

Points at extremities of closed interval
$f(-1)=\left(2 \times(-1)^{3}\right)-\left(5 \times(-1)^{2}\right)-(4 \times(-1))+1=-2$
$f(4)=\left(2 \times 4^{3}\right)-\left(5 \times 4^{2}\right)-(4 \times 4)+1=33$

Example
1)

A function f is defined for $x \in \mathrm{R}$ by $f(x)=2 x^{3}-5 x^{2}-4 x+1$.
Find the maximum and minimum value of $f(x)$ where $-1 \leq x \leq 4$.
Step 1: Find the stationary points
SPs occur when $f^{\prime}(x)=0$

$$
\begin{gathered}
f^{\prime}(x)=6 x^{2}-10 x-4 \\
6 x^{2}-10 x-4=0 \\
2\left(3 x^{2}-5 x-2\right)=0 \\
2(3 x+1)(x-2)=0
\end{gathered}
$$

$$
\begin{array}{ccc}
\text { Either } & 3 x+1=0 \text { or } & x-2=0 \\
\div 1 & x=-\frac{1}{3} & x=2 \\
\div 3 & &
\end{array}
$$

$$
\left(-\frac{1}{3}, \frac{46}{27}\right) \text { and }(2,-11) \quad f^{\prime}(x)=6 x^{2}-10 x-4
$$

Step 2: Find the nature of the stationary points

so, $\left(-\frac{1}{3}, \frac{46}{27}\right)$ is a max turning point

$$
(2,-11) \text { is a min turning point }
$$

2) This is the graph of $f(x)=x^{3}-12 x+3$

Find $f^{\prime}(x)$ and sketch the graph of $f^{\prime}(x)$.

Steps

1. Plot the x coordinate of the stationary point onto the new graph.
2. Identify if first part of the graph is +ve or -ve
3. Identify if second part of the graph is +ve or -ve

03/10/17

Graph of the Derived Function

Learning Intention
By the end of this lesson, given the graph of $f(x)$, you should be able
to draw the graph of $f^{\prime}(x)$.

Examples

Sketch the graph of $f^{\prime}(x)$

Differentiation of $\sin x$ and $\cos x$

Learning Intention

By the end of this lesson, you should be able to differentiate $\sin x$ and $\cos x$.

There are two new rules which are used to differentiate expressions involving trigonometric functions:

Examples

1) Differentiate $y=3 \sin x$ with respect to x.

$$
\begin{aligned}
y & =3 \sin x \\
\frac{d y}{d x} & =3 \cos x
\end{aligned}
$$

[^0]2) A function f is defined by $f(x)=\sin x-2 \cos x$ for $x \in \mathrm{R}$. Find $f^{\prime}\left(\frac{\pi}{3}\right)$.
\[

$$
\begin{aligned}
f(x) & =\sin x-2 \cos x \\
f^{\prime}(x) & =\cos x-(-2 \sin x) \\
& =\cos x+2 \sin x \\
f^{\prime}\left(\frac{\pi}{3}\right) & =\cos \frac{\pi}{3}+2 \sin \frac{\pi}{3}
\end{aligned}
$$
\]

Using Exact Values $=\frac{1}{2}+2 \frac{\sqrt{3}}{2}$

$$
=\frac{1}{2}+\sqrt{3}
$$

4) Find the derivative of $f(x)=\frac{1-x \cos x}{2 x}$

$$
\begin{aligned}
f(x) & =\frac{1}{2 x}-\frac{x \cos x}{2 x} \\
& =\frac{1}{2 x}-\frac{\cos x}{2} \\
& =\frac{1}{2} x^{-1}-\frac{1}{2} \cos x \\
f^{\prime}(x) & =-\frac{1}{2} x^{-2}+\frac{1}{2} \sin x \\
& =-\frac{1}{2 x^{2}}+\frac{1}{2} \sin x
\end{aligned}
$$

3) Find the equation of the tangent to the curve $y=\sin x$ when

$$
x=\frac{\pi}{6} . \quad \text { Remember we need a point and the gradient. }
$$

$$
\begin{array}{rlr}
\text { At } x=\frac{\pi}{6} & y & =\sin \frac{\pi}{6} \\
& =\frac{1}{2} & \left(\frac{\pi}{6}, \frac{1}{2}\right)
\end{array}
$$

$$
\frac{d y}{d x}=\cos x
$$

$$
y-b=m(x-a)
$$

$$
=\cos \frac{\pi}{6}
$$

$$
=\frac{\sqrt{3}}{2}^{0}
$$

$$
\times 2^{y}
$$

$$
y-\frac{1}{2}=\frac{\sqrt{3}}{2}\left(x-\frac{\pi}{6}\right)
$$

$$
2 y-1=\sqrt{3}\left(x-\frac{\pi}{6}\right)
$$

$$
2 y-1=\sqrt{3} x-\frac{\sqrt{3} \pi}{6}
$$

$$
0=\sqrt{3} x-2 y-\frac{\sqrt{3} \pi}{6}+1
$$

> 5) Find the gradient of the tangent to the curve $y=2 \cos x$ at $x=\frac{2 \pi}{3}$

$$
\frac{d y}{d x}=-2 \sin x
$$

$$
\text { At } x=\frac{2 \pi}{3} \quad \begin{array}{rl|l}
\frac{d y}{d x} & =-2 \sin \frac{2 \pi}{3} \\
& =-2 \times \frac{\sqrt{3}}{2} \\
& =-\sqrt{3}
\end{array}
$$

$$
\text { At } x=\frac{2 \pi}{3}
$$

$$
\begin{aligned}
y & =2 \cos \frac{2 \pi}{3} \\
& =2 x-\frac{1}{2}
\end{aligned}
$$

$$
=-1 \quad\left(\frac{2 \pi}{3},-1\right)
$$

$$
y-b=m(x-a)
$$

$$
y+1=-\sqrt{3}\left(x-\frac{2 \pi}{3}\right)
$$

maths1_2.ppt
© maths1_3.ppt

[^0]: $\frac{d}{d x}(\sin x)=\cos x \quad \frac{d}{d x}(\cos x)=-\sin x$

