
4y2 - 5y - 6 (4 4 3) (y - 2) 1) Fully factorise

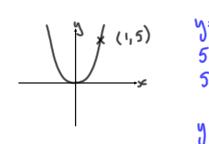
- 2) Expand the brackets and simplify: (m + 4)(2m 3)
- $2m^2-3m+8m-12$ 3) Calculate 20% of 340 without a calculator $=2m^2+5m-12$
- **6\$** 4) What is 40ml increased by 20% ? 48ml

Today's Learning:

To find the equation of quadratic graphs using substitution of a point.

 $y = kx^2$ graph is the $y = x^2$ graph stretched by a factor of k

Starter


- 1) Factorise fully: $2x^2 + x - 10$ (2x+5)(x-7)
- 2.3 x 10⁵ x 3 x 10⁻² 2) Without a calculator, find
- 3) Without a calculator, simplify $\frac{912}{18} = \frac{6.9 \times 10^3}{6}$

Today's Learning:

To continue to consider transformations of quadratic graphs.

y=2x2 y=-4x2

e.g. Find the equation of the graph of the form $y = kx^2$

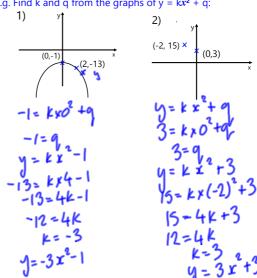
moved
$$y = x^2 + q$$

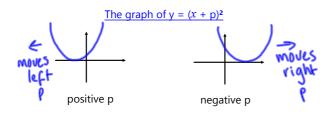
positive q negative q

Starter

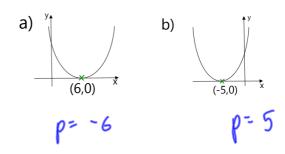
1) Find p for the graph $y = x^2 + p$, shown below:

2) Without a calculator, find a fifth of 70.


3) Fully factorise:
$$3g^2 - 23g + 30$$
 $(3g - 5)(g - 6)$


4) Multiply out the brackets: (e + 2)(e + 3)(e - 1)

$$\frac{(e^{2}+5e+6)(e-1)}{(e^{2}+5e+6)(e-1)}$$


$$= e^{3}+4e^{2}+e-6$$

e.g. Find k and q from the graphs of $y = kx^2 + q$:

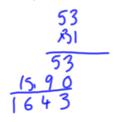
e.g. Find p for these graphs of $y = (x + p)^2$:

12. Quadratics NOTES.notebook

September 13, 2018

2) Calculate 3 x 104 x 7 x 102,

giving your answer in scientific


Starter

1) Fully factorise:

(3m+3)(m+3)

2) Simplify the following:

a)
$$\sqrt{40} + \sqrt{160}$$
 b) $\frac{x^4}{x^3 \times x}$
= $2\sqrt{10} + 4\sqrt{10}$
= $6\sqrt{10}$
3) Without a calculator, find 53 x 31

Starter

notation

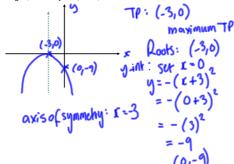
1) Find a and b, given: 2a - b = 2

a + b = 7

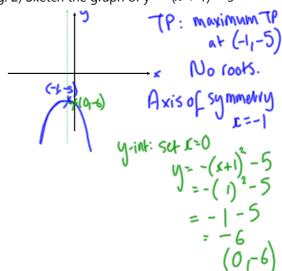
3) Round 304.56 to 3 sig. fig.

=2.1×107 4) Find the area of the

77.9cm²


Sketching Quadratic Graphs

23/8/18


We can be asked to label:

- . Turning Point and its nature
- Roots (where it crosses the x-axis)
- y-intercept
- Equation of the axis of symmetry

e.g. 1) Sketch $y = -(x + 3)^2$ and label all of the above.

e.g. 2) Sketch the graph of $y = -(x + 1)^2 - 5$

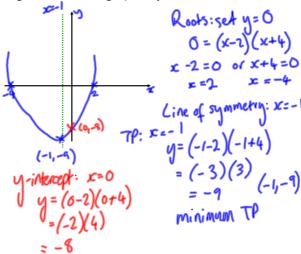
Starter

1) Write down the y-intercept of the line 2y = 3 - 2x

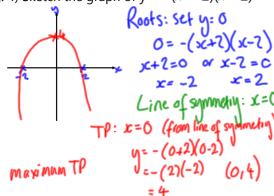
$$y = -x + 15$$
 $y = \frac{3-2x}{2}$
1.5 $y = 1.5 - x$

- 2) Without a calculator, find a fifth of 22

- 3) Simplify 3e4 x 2e-2
- 4) What is the difference between -4 and 7?


Today's Learning:

Sketching quadratic graphs.


$$a \times b = 0$$

What can you say about a and b?

e.g. 3) Sketch the graph of y = (x - 2)(x + 4)

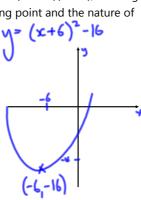
e.g. 4) Sketch the graph of y = -(x + 2)(x - 2)

Sketch
$$y = (x + 4)(x - 8)$$

Rooks: $(-4,0)$ (8,6)

Line of symmetry: $x=2$

TP: $(2,-36)$


Minimum TP

y-int: $(0,-32)$

Starter

a) Write the expression (x + 10)(x + 2) in completed square form. $= x^2 + 12x + 20 = (x + 6)^2 - 16$

b) Hence sketch the graph y = (x + 10)(x + 2), marking the coordinates of the turning point and the nature of the turning point.

How do we solve
$$(x + 4)(x - 1) = 0$$
 for x ?
 $x + 4 = 0$ or $x - 1 = 0$
 $x = -4$ or $x = 1$

How might we solve $x^2 - x - 6 = 0$ (x-3)(x+2) = 0 $x = 3 \cdot (x-2)$

Solving Quadratic Equations

4/9/17

A quadratic equation can be written as $ax^2 + bx + c = 0$ Then, we can solve by factorising.

Examples:

1)
$$x^2 - 2x - 35 = 0$$
1) $x^2 - 2x - 35 = 0$
1) $x^2 - 2x - 35 = 0$
2) $2x^2 + 10x = 0$
2 $x + 5 = 0$
2 $x = 7$
3 or $x = -5$
2 $x = 0$
3 or $x + 5 = 0$
3 or $x + 5 = 0$
4 or $x + 5 = 0$
4 or $x + 5 = 0$
4 or $x + 5 = 0$

Example:

Solve
$$2x^{2} + 5x + 3 = 0$$

$$\frac{(2x - 1)(x + 3)}{(2x + 3)(x + 1)} = 0$$

$$2x^{2} + 6x - 1x - 3$$

$$(2x + 3)(x + 1) = 0$$

$$2x^{2} + 2x + 3 + 3$$

$$2x + 3 = 0 \text{ or } x + 1 = 0$$

$$x = -1$$

$$2x = -3$$

$$x = -15$$

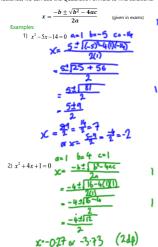
Starter

Rewrite with a positive index.

d)
$$\frac{1}{3} a^{\frac{-3}{4}}$$

$$e^{-\frac{3}{4}}$$
 e) 5

Rewrite in index form.



d)
$$\sqrt[5]{n^3}$$

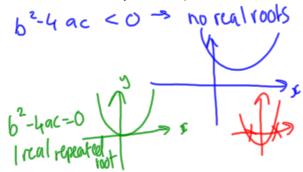
e)
$$\frac{2}{\sqrt{y}}$$
 f) $\frac{3}{\sqrt[5]{c^6}}$ $\frac{2}{\sqrt{y^{14}}}$ $\frac{3}{\sqrt{c^6}}$ $\frac{3}{\sqrt{y^{14}}}$ $\frac{3}{\sqrt{c^6}}$

Today's Learning:

To write any quadratic equation in the form $\mathbf{a}x^2 + \mathbf{b}x + \mathbf{b}x$ **c** = **0** and to solve equations that don't factorise by using the quadratic formula.

Starter

2) Sketch the graph f(x) = 2x - 1. Write the coordinates where this line meets the line f(x) = 4.


1) Given $f(x) = x^2 - 4$, evaluate f(3)

3) Given f(x) = 3x + 10, find x such that f(x) = 14.8.

((x) = 3x + 10

14.8=31+10

How can we tell how many roots an equation has?

Starter

Solve using the Quadratic Formula, giving answers to 2 decimal places:

a)
$$4x^{2}-11=0$$
 b) $(x+5)^{2}=7$ c) $4x(x-3)+2=0$
 $(x+5)(x+5)=7$ $x^{2}+10x+25=7$ $x=\frac{12\pm\sqrt{-n}^{2}-4(4)(2)}{2(4)}$ $x=\frac{12\pm\sqrt{-12}}{8}$

The Discriminant

For a quadratic equation $ax^2 + bx + c = 0$ the discriminant is $b^2 - 4ac$.

b² - 4ac > 0 means 2 real, distinct roots

 b^2 - 4ac = 0 means 2 real, equal roots

b² - 4ac < 0 means no real roots

e.g. 1) Determine the nature of the roots of $2(x + 1) = x^2 - 3$

$$2x+2=x^{2}-3$$

$$-x^{2}+2x+5=0$$

$$6^{2}-4ac=2^{2}-4(-1)(5)$$

$$=4+20$$

$$=24$$

$$2476 so 2 real distinct roots.$$

e.g. 2) Find the range of values for T such that $x^2 + 2x - 2T = 0$ has 2 real, distinct roots.

a=1 b=2 (=-2)T

Starter

Rationalise the denominator:

$$\frac{4}{(\sqrt{5} + \sqrt{2})} \times \frac{(\sqrt{5} - \sqrt{2})}{(\sqrt{5} - \sqrt{2})} \times \frac{4(\sqrt{5} - \sqrt{2})}{5 - (\sqrt{5} + \sqrt{6})} \times \frac{4(\sqrt{5} - \sqrt{2})}{3}$$

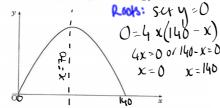
The **areas** of these rectangles are equal.

a) Find the value of x. b) Calculate the area of the rectangles.

Starter

1) Given the function $f(x) = (5 - x)^2$, evaluate:

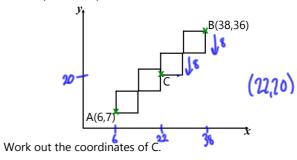
2) Multiply out the brackets and simplify:


$$(w + 1)(w - 1)(w + 5)$$

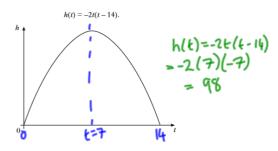
 $(w + 1)(w + 5) = w^3 + 5w^2 - w - 5$

The profit made by a publishing company of a magazine is calculated by

$$y = 4x(140 - x),$$


where y is the profit (in pounds) and x is the selling price (in pence) of the magazine.

The graph below represents the profit y against the selling price x.



Starter

A pattern is made from four identical squares. The sides of the squares are parallel to the axes.

The diagram below shows the path of a rocket which is fired into the air. The height, h metres, of the rocket after t seconds is given by

- (a) For how many seconds is the rocket in flight?
- (b) What is the maximum height reached by the rocket?

Starter

Simplify:

$$\frac{(a^2)^3 \times a^{-2}}{a^5 \times a^{-5}}$$

$$= \frac{\alpha^6 \times \alpha}{\alpha^6 \times \alpha}$$

$$= \frac{\alpha^4}{1} = \alpha^4$$