Starter

- 1) Are the points A(-2, 10), B(0, -4) and C(5, 11) collinear? Why/why not?
- 2) If the points P(-2, 5), Q(2, -3) and R(7, t) are collinear, find t.
- 3) Fully factorise:
- a) 4b² 16

A surd is a square root which doesn't 'work out' as a rational number.

eg.
$$\sqrt{5}$$
 and $\sqrt{3}$ are surds $\sqrt{4}$ isn't, because $\sqrt{4} = 2$

$$2.16 = \frac{13}{6}$$

A surd is a square root which doesn't 'work out' as a rational

Which square roots are surds?

$$\sqrt{21}$$

$$\sqrt{14}$$

$$\sqrt{7}$$

$$\sqrt{49}$$

$$\sqrt{100}$$

$$\sqrt{36}$$

Rules of Surds

1)
$$\sqrt{m} \times \sqrt{n} = \sqrt{mn}$$

2) $\frac{\sqrt{m}}{\sqrt{n}} = \sqrt{\frac{m}{n}}$
e.g. Simplify:
1) $\sqrt{12}$ 2) $\sqrt{5} \times \sqrt{10}$
= $\sqrt{4 \times 3}$ = $\sqrt{5} \times \sqrt{3}$
= $\sqrt{4 \times 3}$ = $\sqrt{5} \times \sqrt{3}$
= $\sqrt{25} \times \sqrt{3}$
= $\sqrt{27} \times \sqrt{3}$
= $\sqrt{3} \times \sqrt{3}$

Starter

1) Simplify the surds:

a)
$$\sqrt{72}$$

= $\sqrt{9} \times \sqrt{8}$
= $\sqrt{9} \times \sqrt{9}$
= $\sqrt{9} \times$

- 2) Fully factorise:
- a) m² + 7m 44
- (m-4)(m+11) b) $2f^2 7f 15$ (2c+3)(c-5)
- £76.40 3) Calculate a fifth of £382

Express each of the following in its simplest form.

- $\sqrt{24}$
- **b** $\sqrt{500}$
- c $\sqrt{32}$ d $\sqrt{75}$

- $\sqrt{1000}$ f $3\sqrt{8}$
- **g** $6\sqrt{12}$ **h** $5\sqrt{50}$

Simplify the following:

Starter

- 1) Find the gradient between these points:
- a) (2, 4) and (5, 7)
- **b)** (-1, -2) and (-10, 3)
- 2) Prove that the points A(0, 3), B(2, 1) and C(5, -2) are collinear.
- 3) Calculate $\frac{2}{5} + \frac{3}{10} = \frac{7}{10}$

Challenge:

Simplify

B+B+ B+B+B

Adding/Subtracting Surds

Treat the surd like an x in algebra.

e.g. 1) Simplify
$$\sqrt{18} - \sqrt{8}$$

= $9 \times 2 - 4 \times 2$
= $3 / 2 - 2 / 2$
= $1 / 2$

2) Simplify
$$\sqrt{45} + \sqrt{5} - \sqrt{20}$$

= $\sqrt{9 \times 5} + \sqrt{5} - \sqrt{4 \times 5}$
= $3/5 + \sqrt{5} - 2/5$
= $2/5$

Starter

- 1) Find the gradient of the straight line joining:
- **a)** (-2, 4) & (3, 6)
- **b)** (2, 4) and (-1, -10)
- 2) Multiply out the brackets and simplify:

$$(m + 1)(m - 2)(m + 2)$$

3) If a = 4 and b = -3, evaluate:

b)
$$2(a + b) - b^2$$

$$= 16 - 2 \times -3$$

$$= 16 + 6 = 22$$

$$= 2 - 9 = -7$$

Today's Learning:

To add and subtract surds and to multiply out brackets.

Today's Learning:

To add and subtract surds and to multiply out brackets.

Write a question to test your partner on today's learning.

Swap, complete, swap, check.

Starter

1) Remove brackets and simplify: $(y - 2)(y + 5)^2$

$$= y^{3} + 10y^{2} + 75y - 2y^{2} - 70y - 50$$

$$= y^{3} + 8y^{2} + 5y - 50$$

$$= y^{3} + 8y^{2} + 5y - 50$$

2) Factorise the following:

a)
$$2m^2 + 7m - 15$$

 $(2m - 3)(M+5)$
b) $3y^2 - 27$
 $= 3(y^2 - 9)$
 $= 3(y + 3)(y - 3)$

Today's Learning:

To rationalise the denominator of a fraction.

Rationalising the Denominator

Rationalising the denominator means leaving no surds on the bottom of the fraction.

Examples:

Rationalise the denominator and simplify:

1)
$$\frac{1}{\sqrt{3}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{3}$$
 2) $\frac{3}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{3\sqrt{5}}{5}$ 3) $\frac{9}{2\sqrt{3}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{9\sqrt{5}}{6}$

Rationalise the denominator and simplify:

$$4) \frac{\sqrt{5}}{\sqrt{3}}$$

5)
$$\frac{15\sqrt{2}}{2\sqrt{5}}$$

Starter

- 1) Find a fifteenth of 372
- 2) Write in completed square form: $e^2 4e + 1$
- 3) Without a calculator, find the circumference of a circle with diameter 5 cm. Take π to be 3.14.

$$(c-7)(e-7)$$
 $c=71\times d$
= 3.14×5
= 15.7cm

Multiplying Out Brackets

e.g. Expand and simplify:

1)
$$2\sqrt{2}(3-\sqrt{2})$$
 2) $(6-\sqrt{2})^2$
= $6\sqrt{2} - 2\sqrt{4}$ = $(6-\sqrt{2})(6-\sqrt{2})$
= $6\sqrt{2} - 2 \times 2$ = $36 - 6\sqrt{2} - 6\sqrt{2} + \sqrt{4}$
= $6\sqrt{2} - 4$ = $36 - 12\sqrt{2} + 2$
= $36 - 12\sqrt{2}$
= $12 - 6\sqrt{2} + 4\sqrt{2} - 2\sqrt{4}$
= $12 - 2\sqrt{2} - 4$

Rationalising the Denominator

When there is more than one term on the bottom of the fraction, use the **conjugate surd** (the same terms with the opposite cirp.)

raction, use the conjugate surfaction, use the conjugate surfaction, use the conjugate surfaction with the opposite sign).

e.g. 1)
$$\frac{10}{(7+\sqrt{5})} \times \frac{(7-\sqrt{3})}{(7-\sqrt{3})} = \frac{10(7-\sqrt{3})}{49-5} = \frac{10(7-\sqrt{3})}{49-5} = \frac{2(7-\sqrt{3})}{22} = \frac{2(7-\sqrt{3})}{3-2} = \frac{2(7-\sqrt{3})}{3-2} = \frac{2(7-\sqrt{3})}{1} = 2(7-\sqrt{3}) = 2(7-\sqrt{3})$$

Starter

1) Multiply out the brackets and simplify if possible:

a)
$$(\sqrt{2} + \sqrt{3})(7 - \sqrt{2})$$

= $7\sqrt{2} - 2 + 7\sqrt{3} - 16$
b) $(2 + \sqrt{3})(2 - \sqrt{3})$
= $4 - 2\sqrt{3} + 2\sqrt{3} - 3$
c) $(2\sqrt{3} + \sqrt{2})(2\sqrt{3} - \sqrt{2})$
= $4 - 3 = 1$
= $4 - 3 = 1$
= $12 - 2 = 10$

2) Without a calculator, find:

= 8-252

a)
$$0.35 \times 0.2$$
 b) $\frac{10^{1}}{14} \times \frac{21}{30} \times 1$ c) $20 - 0.407$

$$0.67 = \frac{1}{2}$$

$$19.593$$

$$1 \times 0.35 = 0.7$$

Today's Learning:

To practice rationalising the denominator of surds.

Express with a rational denominator:

$$\frac{2}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{2\sqrt{3}}{3}$$

Express with a rational denominator:

$$\frac{1}{2\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}$$

$$= \frac{\sqrt{5}}{10}$$

Express with a rational denominator:

$$\frac{5}{(4-\sqrt{3})} \times \frac{(4+\sqrt{3})}{(4+\sqrt{3})}$$

$$= \frac{20+5\sqrt{3}}{16+4\sqrt{3}-4\sqrt{3}-3}$$

$$= \frac{20+5\sqrt{3}}{13}$$

Starter

Rationalise the denominators:

1)
$$\frac{1}{2-\sqrt{5}} \times \frac{246}{246}$$
 2) $\frac{2}{\sqrt{5}+\sqrt{3}} \times \frac{6 - 6}{6 - 6}$

= $\frac{2+6}{4+26} = \frac{2+6}{-1} = \frac{2+6}{-1} = \frac{26-26}{2}$

= $\frac{2+6}{4-5} = \frac{2+6}{-1} = \frac{26-26}{2}$

= $\frac{26-26}{2}$

$$3) \frac{1+\sqrt{2}}{3+\sqrt{3}} \times \frac{3-\sqrt{3}}{3-\sqrt{3}} \quad 4) \frac{\sqrt{5}+2}{\sqrt{3}-\sqrt{5}} \frac{13+\sqrt{5}}{3+\sqrt{5}} = \frac{3-\sqrt{5}+3\sqrt{5}-\sqrt{5}}{9-3} = \frac{3-\sqrt{5}+3\sqrt{5}-\sqrt{5}}{6} = \frac{\sqrt{5}+2\sqrt{5}$$

Today's Learning:

To think about what indices are and the rules for multiplying and dividing with them.

How else can we write $4 \times 4 \times 4$? 4^3 What is $4^3 \times 4^2 = 1.5$

Rules of Indices

20/2/18

5 is the index in a⁵. This means a x a x a x a x a

Rules:

1)
$$a^{m} \times a^{n} = a^{m+n}$$

What is
$$3^4 \div 3^3$$
? = $\frac{3}{3}$

Rules of Indices

5 is the index in a⁵. This means a x a x a x a x a

Rules:

- 1) $a^m \times a^n = a^{m+n}$
- 2) $\frac{a^{m}}{a^{n}} = a^{m-n}$

What is $(5^3)^2$? = 5^6 5x5x5 x 5x5x5

Rules of Indices

5 is the index in a⁵. This means a x a x a x a x a

Rules:

- 1) $a^m \times a^n = a^{m+n}$
- 2) $\frac{a^m}{a^n} = a^{m-n}$
- 3) $(a^{m})^{n} = a^{mn}$

e.g. Simplify:

1)
$$\frac{g^3 \times g^2}{g^4}$$
 2) $(2h^3)^2$ 3) $r^2(r + r^5)$ = 4 h^6 = r^3 4 r^7

1) Factorise the following: Starter

- a) w² + 10w + 21 (w+7)(w+3)

 b) 2g² 5g 12 (2g +3)(g 4)

 2) Write in completed square form:

a)
$$e^2 + 4e + 1$$

 $(e+1)^2 - 3$

- a) $e^{2} + 4e + 1$ (2+1) -3 (T-4) -6 3) Given that $68 \times 625 = 42500$, without a calculator, find: a) $\frac{425}{625}$ b) $\frac{4250}{62.5}$ $68 = \frac{42500}{625}$ $\frac{4250}{625} = 6.8$ $0.68 = \frac{425}{625}$ $\frac{4250}{62.5} = 6.8$

$$68 = \frac{42500}{625}$$

$$0.68 - \frac{425}{625}$$

Today's Learning:

To learn more rules for working with indices.

What is the value of 30?

$$3^{3} \div 3^{3} = 3^{\circ}$$

$$\frac{3 \times 3 \times 3}{3 \times 3 \times 3} = \frac{1}{1} = 1$$

4)
$$a^0 = 1$$

What is the value of
$$10^{-3}$$
?
$$10^{\circ} \div 10^{3} = 10^{3}$$

$$10^{-3} = \frac{1}{10^{3}}$$

$$10^{-3} = \frac{1}{10^{3}}$$

4)
$$a^0 = 1$$

5)
$$a^{-m} = \frac{1}{a^m}$$

e.g. rewrite with a positive index:

$$4^{-4} = \frac{1}{4^4} = \frac{2) 2b^{-3}}{b^3} = 3y^5$$

1) Write down the value of:

a)
$$\sqrt{16} = 4$$
 b) $\sqrt[3]{7} = 3$ c) $\sqrt{16} = 2$

2) Factorise the following:

a)
$$h^2 - 2h - 24$$

a)
$$h^2 - 2h - 24$$

 $(h+4)(h-6)$
b) $3g^2 + 8g + 4$
 $(3g+2)(g+2)$

3) Find j:
$$\frac{1}{j} + \frac{1}{j} = \frac{1}{10}$$

Today's Learning:

To write numbers with fractional indices in other ways.

What is the value of
$$3^{1/2}$$

$$(3^{1/2})^2 = 3^1$$

$$4^{\frac{1}{3}} \left(4^{\frac{1}{3}}\right)^3 = 4^{\frac{1}{3}}$$

$$3^{\frac{2}{3}} = 3^{\frac{2}{3}}$$

$$(3^{2/3})^3 = 3^2$$

6)
$$a^{\frac{m}{n}} = \sqrt[n]{\mu}^{m}$$

e.g. Find the value of:

a)
$$16^4$$

$$= \sqrt{16^3}$$

$$= 2^3$$

b)
$$25^{\frac{1}{2}} = \frac{1}{25^{\frac{1}{2}}}$$

$$= \frac{1}{\sqrt{25}} = \frac{1}{5}$$

Today's Learning:

To be **confident** using all 6 indices rules.

Starter

Find someone to answer the question and write their name...

- 1) Factorise m² 2m 24 (m+4)(m-6)
 3) Write in completed
- square form: $m^2 4m + 5$ (M 2) + 15) What is the value of 13²?
- 2) Find 20% of £35.50
- 4) Factorise 2m² 6m 8
 (2 m 4)(m+1)
 2 (m-4)(m+1)
 6) What is the value of 2-2

7) Factorise
$$j^2 - 25$$

$$(j-5)(j+5)$$

$$(2b-3a)(2b+3a)$$

Today's Learning:

To practice exam style questions on surds and indices.

Starter

1) Multiply out the brackets and simplify: (f + 5)(f - 2)(f - 3) $= (f^{2} + 3f - 10)(f - 3)$ $= f^{3} + 3f^{2} + 10f - 3f^{2} - 9f + 30$ 2) Fully factorise: $2m^{2} - 13m + 15$ (2m + 5)(m + 3) (2m - 5)(m - 5)3) Solve the equation: $3m - 2 = \frac{2m}{3} + 5$ 9m - 6 = 2m + 15 7m - 6 = 15 7m - 6 = 15 7m - 21 m - 34) Calculate $2 + 3.5 \times 4 - 1.2^{2}$ $= 2 + 3.5 \times 4 - 1.44$ = 2 + 14 - 1.44 = 14.56