Starter

1) A small cube is enlarged by a length scale factor of 3 .

The small cube has a surface area of $25 \mathrm{~cm}^{2}$ and a volume of $140 \mathrm{~cm}^{3}$.

What is the new surface area and
$25 \times 3^{2}=25 \times 9=225 \mathrm{~cm}^{2}$
$25 \times 3^{3}=25 \times 27=675 \mathrm{~cm}^{3}$

Similarity

Today we are learning...
How to answer a range of exam style questions on similarity.
I will know if I have been successful if...
I can quickly calculate the scale factor.
I can find the volume once increased by a scale factor.
I can find the surface area once increased by a scale factor.

Similarity Question Relay

Answer one question at a time.
Once you have completed a question bring it to me to check your answer and collect the next question.

Write your answer on the question sheet.
Each team has a pass card - use it wisely!

Plenary

A deflated beach ball has an initial surface area of $34 \mathrm{~cm}^{2}$ and a volume of $14 \mathrm{~cm}^{3}$.

It is inflated until it has increased in size by a scale factor of 4. What is the new volume and surface area of the ball?

Starter

1) What is the area of the smaller shape?

2) What is the arc length and area of the sector shown?

CAST Diagram

Today we are learning...
How to draw and use the CAST diagram to solve trig equations. I will know if I have been successful if...

I know how to draw the CAST diagram.
I can identify which quadrants to use.
I can solve to find the required values of theta.

Examples

1) $\sin (x)=0.5$ for $0<x<360$

Examples

1) $\sin (x)=0.5$ for $0<x<360$

National 5 WB 11th Dec Similarity

Examples

1) $\sin (x)=0.5$ for $0<x<360$

Examples

2) $\cos (x)=0.5$ for $0<x<360$

Examples

3) $\tan (\theta)=\sqrt{3}$ for $0<x<360$

Examples

4) $\cos (\theta)=-0.5$ for $0<x<360$

Practice

1. Solve the following equations where $0 \leq x \leq 360$
(a) $\sin x^{\circ}=0.5$
(b) $\quad \cos x^{\circ}=0.866$
(c) $\quad \tan x^{\circ}=1$
(d) $\quad \cos x^{\circ}=-0.5$
(e) $\quad \tan x^{\circ}=-0.577$
(f) $\quad \sin x^{\circ}=-0.866$
(g) $\quad \tan x^{\circ}=1.732$
(h) $\quad \sin x^{\circ}=0.707$
(i) $\cos x^{\circ}=0.707$
(j) $\quad \sin x^{\circ}=-0.707$
(k) $\quad \cos x^{\circ}=-0.866$
(l) $\tan x^{\circ}=-1.732$
2. Solve the following equations where $0 \leq x \leq 360$
(a) $\quad \sin x^{\circ}=0.313$
(b) $\quad \cos x^{\circ}=0.425$
(c) $\quad \tan x^{\circ}=5.145$
(d) $\quad \cos x^{\circ}=-0.087$
(e) $\tan x^{\circ}=-0.869$
(f) $\quad \sin x^{\circ}=-0.191$
(g) $\quad \tan x^{\circ}=11.43$
(h) $\sin x^{\circ}=0.695$
(i) $\quad \cos x^{0}=0.755$
(j) $\quad \sin x^{0}=-0.358$
(k) $\quad \cos x^{\circ}=-0.682$
(l) $\tan x^{\circ}=-0.268$
3. Solve the following equations where $0 \leq x \leq 360$
(a) $2 \sin x^{0}=1$
(b) $3 \cos x^{0}=2$
(c) $3 \tan x^{\circ}=5$
(d) $2 \cos x^{\circ}=-1$
(e) $2 \tan x^{\circ}=-8$
(f) $4 \sin x^{\circ}=-3$
(g) $5 \tan x^{\circ}=23.5$
(h) $5 \sin x^{\circ}=2$
(i) $6 \cos x^{\circ}=1$
(j) $8 \sin x^{\circ}=-3$
(k) $11 \cos x^{\circ}=-9$
(l) $10 \tan x^{\circ}=-9$

Answers

1. (a) $30^{\circ}, 150^{\circ}$
(d) $120^{\circ}, 240^{\circ}$
(g) $60^{\circ}, 240^{\circ}$
(j) $225^{\circ}, 315^{\circ}$
(a) $18.2^{\circ}, 161 \cdot 8^{\circ}$
(d) $95^{\circ}, 265^{\circ}$
(g) $85^{\circ}, 265^{\circ}$
(j) $201^{\circ}, 339^{\circ}$
(k) $133^{\circ}, 227^{\circ}$
(b) $48.2^{\circ}, 311.8^{\circ}$
(c) $59^{\circ}, 239^{\circ}$
(d) $120^{\circ}, 240^{\circ}$
(e) $104^{\circ}, 284^{\circ}$
(f) $228.6^{\circ}, 311 \cdot 4^{\circ}$
(g) $78^{\circ}, 258^{\circ}$
(h) $\quad 23 \cdot 6^{\circ}, 156 \cdot 4^{\circ}$
(i) $80 \cdot 4^{\circ}, 279 \cdot 6^{\circ}$
(j) $202^{\circ}, 338^{\circ}$
(k) $144 \cdot 9^{\circ}, 215 \cdot 1^{\circ}$
(l) $138^{\circ}, 318^{\circ}$

Introduction to next lesson...
a) Solve $-2+3 \sin (x)=0$ for $0<x<360$
b) Solve 3-7tan $(x)=2$ for $0<x<360$

Starter

1) Solve the following using the CAST diagram for $0<x<360$.
a) $\tan (x)=1.1917 \quad \tan ^{-1}(1.1917)=50^{\circ}$

$$
x=50^{\circ}, 230^{\circ}
$$

b) $\cos (x)=0.9063$
$\cos ^{-1}(0.9063)=25^{\circ}$
$x=335^{\circ}, 25^{\circ}$

Solving Trig Functions

Today we are learning...
How to solve trigonometric functions.
I will know if I have been successful if...
I can use the CAST diagram as a tool to help me.
I can rearrange equations where required.
I know that there may be more than one solution.

Example

1) Solve the equation $5 \cos (x)=1$ for $0<x<360$

$$
\begin{aligned}
& 5 \cos (x)=1 \\
& \cos (x)=\frac{1}{5}=0.2 \\
& \cos ^{-1}(0.2)=\frac{78.46^{\circ}}{5} \\
& x=360-78.46 \\
& =281.53^{\circ}
\end{aligned}
$$

Example
2) Solve the equation $5 \sin (x)+4=0$ for $0<x<360$

$$
\begin{aligned}
& 5 \sin (x)=-4 \\
& \sin (x)=\frac{-4}{5} \\
& \sin ^{-1}\left(\frac{-4}{5}\right)=-53.13 \\
& x=180+53.13 \\
& =233.13^{\circ} \\
& x=360-53.13 \\
& =306.87^{\circ}
\end{aligned}
$$

Practice

1) Solve the following equations where $0 \leq x \leq 360$.
(a) $2 \sin x^{\circ}=1$
(b) $5 \sin x^{\circ}-4=0$
(d) $6 \sin x^{\circ}+1=0$
(e) $4 \sin x^{\circ}+1=15$
(c) $5 \sin x^{\circ}=-3$
(f) $12+9 \sin x^{\circ}=8$.
2) Solve the following equations where $0 \leq x \leq 360$.
(a) $6 \cos x^{\circ}=3$
(b) $10 \cos x^{\circ}-2=0$
(c) $3 \cos x^{\circ}=2$
(d) $7 \cos x^{\circ}+4=0$
(e) $9 \cos x^{\circ}+7=2$
(f) $18+4 \cos x^{\circ}=15$.

Highlighted in red - negatives!

Answers

1)

a 30.0°	150°	b	53.1°	127°	
c 217°	323°	d	190°	350°	
e	7.18°	173°	f	206°	334°

2)

a 60.0°
300°
b 78.5°
282°
c 48.19311 .81
d 125°
235°
e $124^{\circ} 236^{\circ}$
f 139° 221°

Plenary

Solve algebraically, the equation $7 \cos x^{\circ}-2=0$ for $0 \leq x \leq 360$

$$
\begin{aligned}
& 7 \cos (x)=2 \\
& \cos (x)=\frac{2}{7} \checkmark \\
& \cos ^{-1}\left(\frac{2}{7}\right)=73.39 \\
& x=360.73 .39^{\text {Answer }} \\
& =286.61^{\circ} \\
& x=73.39^{\circ}
\end{aligned}
$$

Starter

Solve by first rearranging and then using the CAST diagram.

1) $\cos (x)-1=-1 \quad$ for $0<x<360$
2) $3 \tan (x)+1=4$ for $0<x<360$

Trigonometric Identities

Today we are learning...
The key trigonometric identities and how to use them.
I will know if I have been successful if...
I can state some of the key identities.
I can substitute expressions involving the key identities.
I can simplify expressions using the key identities.

$$
\begin{aligned}
& \sin ^{2} A+\cos ^{2} A=1 \\
& \tan A=\frac{\sin A}{\cos A}
\end{aligned}
$$

$$
\tan A=\frac{\sin A}{\cos A} \quad \text { Using the Identities } \quad \sin ^{2} A+\cos ^{2} A=1
$$

1) Prove $3 \cos ^{2}(x)+3 \sin ^{2}(x)=3$

$$
\tan A=\frac{\sin A}{\cos A} \quad \text { Using the Identities } \quad \sin ^{2} A+\cos ^{2} A=1
$$

2) Prove $\tan (x) \cos (x)=\sin (x)$

$$
\tan A=\frac{\sin A}{\cos A}
$$

Using the Identities $\sin ^{2} A+\cos ^{2} A=1$
3) Prove $8 \cos ^{2}(x)=8-8 \sin ^{2}(x)$

$$
\tan A=\frac{\sin A}{\cos A}
$$

Prove the following trigonometric identities :-
(a) $5 \cos ^{2} A+5 \sin ^{2} A=5$
(b) $\quad 4 \cos ^{2} A=4-4 \sin ^{2} A$
(c) $2 \cos ^{2} A-1=1-2 \sin ^{2} A$
(d) $6 \cos ^{2} A-5=1-6 \sin ^{2} A$
(e) $(\cos X+\sin X)^{2}=1+2 \sin X \cos X$
(f) $(\cos P-\sin P)^{2}+2 \sin P \cos P=1$
(g) $(\cos X+\sin X)(\cos X-\sin X)=2 \cos ^{2} X-1$
(h) $(\cos X-\sin X)(\cos X+\sin X)=1-2 \sin ^{2} X$
(i) $\tan P \cos P=\sin P$
(j) $\frac{1-\cos ^{2} \alpha}{\cos ^{2} \alpha}=\tan ^{2} \alpha$
(k) $\frac{1-\sin ^{2} \alpha}{\sin ^{2} \alpha}=\frac{1}{\tan ^{2} \alpha}$
(1) $\frac{\sin \beta}{\cos \beta}+\frac{\cos \beta}{\sin \beta}=\frac{1}{\cos \beta \sin \beta}$.

Plenary

(b) Prove that
$\sin ^{3} x+\sin x \cos ^{2} x=\sin x$

Hint: Factorise the expression first by taking out a common factor.

Starter

1) Solve the equation algebraically for $0<x<360$
$4 \tan (x)+7=5$
2) Simplify
$\tan (x) \cos (x)$

Trigonometric Identities

Today we are learning...
The key trigonometric identities and how to use them.
I will know if I have been successful if...
I can state some of the key identities.
I can substitute expressions involving the key identities.
I can simplify expressions using the key identities.

