Higher Course Plan

Applications Calculus and Relationships Expressions and Functions

Topic	Duration
1: The Straight Line	June
Find the gradient of a line	
Collinearity	9 periods
 Know the features of gradients of: parallel lines perpendicular lines Know the equation of a straight line of the form y = mx + c Know an equation of a straight line of the form ax + by + c = 0 Know the equation of a straight line of the form y - b = m(x - a) Find the distance between two points using the distance formula Recognise the term locus Find the equations of: medians altitudes perpendicular bisector Know the concurrency properties (in triangles) of: medians altitudes perpendicular bisectors 	1. Gradient – revision and $m = \tan \theta$ (Ex 1A) 2. Collinearity (Ex 1B) 3. Perpendicular lines; $y = mx + c$; $Ax + By + C = 0$ (Ex 1D, 1E, 1F) 4. $y - b = m(x - a)$ (Ex 1G) 5. " " (Ex 1I) 6. Perpendicular bisectors (Ex 1I) 7. Altitude of a triangle (Ex 1K) 8. Medians of a triangle (Ex 1M) 9. Mixed questions (Ex 1O)

2: Sets and Functions Set notation Know the meaning of the terms: domain and range of a function	6 periods 1. Functions, domains and ranges (Ex 2B)
Functions and mappings Composite functions Inverse of a function Graphs of inverses Exponential and log functions	2. Composition of functions (Ex 2C) 3. Inverse of functions; Graphs of inverses (Ex 2D, WS) 4. Introduction to logarithms (Ex 2H) 5. Mixed questions (Ex 2I) 6. " " (")
	SUMMER HOLIDAYS
3: Recurrence Relations Know the meanings of the terms: sequence, nth term, limit as n tends to infinity Using recurrence relations to solve problems More complex recurrence relations Linear recurrence relations Know the condition for the limit of a sequence Find and interpret the limit of a sequence from a recurrence relation Define and interpret a recurrence relation of the form $U_{n+1} = aU_n + b$ Solving recurrence relations to find a and b . Solving linked recurrence relations Special sequences	1. Introduction (Ex 5B, 5D) 2. Linear recurrence relations in context (Ex 5C) 3. Limit of sequences defined by R. R.s (Ex 5H) 4. Forming R. R.s given 3 terms (Ex 5I) 5. Mixed questions (Ex 5L)
5: Graphs of Functions Given the graph of $f(x)$, draw graphs of related functions for: • $y = f(x) + a$	9 Periods 1. Standard graphs and $y = f(x) + a$ (Ex 3A, Ex 3C)

•	у	=	f	(x)	+	a
---	---	---	---	-----	---	---

$$\bullet \quad y = -f(x)$$

•
$$y = f(-x)$$

•
$$y = kf(x)$$

•
$$y = f(kx)$$

And combinations of the above functions Know the general features of the graphs of

•
$$f: x \rightarrow a^x$$
 and $f: x \rightarrow \log_a x$

2.
$$y = kf(x)$$
 including $y = -f(x)$

$$3. \quad y = f(x+a)$$

4.
$$y = f(kx)$$
 including $y = f(-x)$

6: Trigonometry Graphs and Equations

Amplitude and period

Graphs of $f: x \rightarrow \sin(ax + b)$ and

$$f: x \rightarrow \cos(ax + b)$$

Radians

Using exact values (in degrees and radians)

Solving problems using exact values

Solving Trig equations graphically and algebraically Solving compound angle equations

6 Periods

1. Trig. graphs

2. Radian measure

3. Exact Values

4. Trig equations

6.

(Ex 4A, 4B)

(Ex 4C)

(Ex 4D, 4E)

(Ex 4H, 4I)

6: Differentiation

Know that f'(x) is:

- rate of change of f at x
- gradient of the tangent to the curve at x

Know that:

- If $f(x) = x^n$ then $f'(x) = nx^{n-1}$
- If f(x) = g(x) + h(x) then f'(x) = g'(x) + h'(x)

13 Periods

- 1. Discuss Differentiation by first principles
- 2. Differentiating x^n
- 3. Finding gradient at a point
- Differentiating kx^n and applications
- 5.
- 6. Leibnitz notation and equation of tangent
- 7.

(Ex 6D)

(Ex 6E)

(Ex 6F, 6G, 6H)

(6J)

	n	616	n-1
•	$lff(x)=ax^n$	then $f'(x)$	= nax

Applications of derivatives

Know how to use Leibniz notation to differentiate $\left(\frac{d y}{d x}\right)$

Differentiation of $\sin x$ and $\cos x$

Equation of the tangent to a curve y = f(x) at x = a Increasing and decreasing functions
Stationary points and graph sketching
Closed intervals
Graphs of derived functions

8.	Increasing and decreasing functions	(Ex 6L)
9.	Stationary points and their nature	(Ex 6M)
10.	Curve Sketching	(Ex 6N)
11.	Closed Intervals	(Ex 6O)
12.	Graph of derived function	(Ex 6P)
13.	Differentiation of $\sin x$ and $\cos x$	(Ex 14B)

Assessment: A

OCTOBER	HOLIDAYS

	OCTOBER HOLIDATS	
7: Polynomials	10 Periods	
Evaluating functions using the nested form		
Synthetic Division by $(x - a)$	1. Introduction and synthetic division	n (Ex 7A, 7B)
Remainder theorem	2. Remainder Theorem	(Ex 7C)
Factor theorem	3. Factor Theorem	(Ex 7E)
Finding a polynomial's coefficients	4. Finding coefficients of polynomia	l (Ex 7F)
Solving polynomial equations	5. Solving polynomial equations	(Ex 7G)
Functions from graphs	6. " " "	(")
Curve sketching	7. Finding equ of polynomial curve	with given roots (Ex 7H)
Approximate roots / Iteration	8. Sketching polynomial curves	(Ex 7I)
	9. " " " "	(")
	Note: Behaviour for large pos/neg x i	not required
	10. Iteration	(Ex 7J)

8: Quadratic Functions	8 Periods	
Graphs of quadric functions		
Sketching of quadric functions	Sketching quadratic graphs	(Ex 8C)
Reminder – completing the square (from NAT 5)	2. Completing the square reminder from NAT 5	(Ex 8D)
Solving quadric equations and in-equations	3. Interpreting completed square form	(Ex 8D)
The quadratic formula	4. Deriving the quadratic formula	
Using the discriminant	May be omitted for lower sets or if time is tight	
Tangency	5. Solving quadratic inequations	(Ex 8F)
	6. Discriminant and the nature of roots	(Ex 8H)
	Note: Rational/irrational roots are not in the textbook but are	e required!
	7. Finding coefficients given the nature of roots	(Ex 8I)
	8. Discriminant and tangency	(Ex 8J)
9: Integration Know that if	9 Periods	
0	1. Introduction and Integrating x^n	(Ex 9G)
$f(x) = F'(x)$ then $\int f(x) dx = F(x) + C$	2. Integrating sums and differences of kx^n	(Ex 9H, Ex 9I)
Understand the definite integral, limits of integration	3. "	(=:::=)
Indefinite integrals	4. Fundamental theorem of calculus	(Ex 9L)
Rules of integration	5. "	(' ')
Definite integrals	6. Area between curve and <i>x</i> -axis	(Ex 9N)
Area under a curve (approximate and exact using integration)	7. Area between two curves	(Ex 9P)
Area between two curves	8. Differential equations	(Ex 9Q)
Differential equations	1	~ ~/
10: Optimization	2 Periods	
Optimization: maximum and minimum	9. Optimisation	(Ex 6Q, 6R)
	10. "	

	Assessment: B 1	
11: The Circle Revise – distance between two points (straight line topic) Equation of a circle – centred on the origin and centre (a, b) Expanded form of the equation of a circle (the general equation of a circle) Intersection of a line and a circle Tangents to circles Finding tangent equations	Periods 1. Distance formula and equ of circle, 2. Equation of circle, centre (a, b), radio 3. General equation of a circle 4. " 5. Intersection of line and circle 6. " 7. Tangent to a circle 8. "	,
12: Addition Formulae Compound angles • $sin(A \pm B) = sin A cos B \pm cos A sin B$ • $cos(A \pm B) = cos A cos B \mp sin A sin B$ Trig identities • $sin 2A = 2sinAcos A$ • $cos 2A = cos^2 A - sin^2 A$ • $cos 2A = 2cos^2 A - 1$ • $cos 2A = 1 - 2sin^2 A$ Applications of addition formulae Trig equations Formulae for $cos^2 x$ and $sin^2 x$	Periods 1. Addition formulae 2. " 3. " 4. Trig identities 5. Double angle formulae 6. Trig equations involving double ang	(Ex 11B, 11C, 11D) (Ex 11E, 11F) (Ex 11G) (Ex 11H)

Assessment: B 2

13: Vectors	11 Periods	
Revise – scalars and vectors, components, magnitude, equal		
vectors, addition and subtractions, multiplication by a scalar,	1. Revision of Nat 5 Vectors (Ex 13A, 13B,	13C, 13D, 13E)
position vectors and 3D coordinates (from NAT 5)	2. "	
Unit vectors	3. Unit vectors & position vectors	(Ex 13F, 13G)
Collinearity	4. Collinearity	(Ex 13I)
Section Formula	5. Vectors and ratios	,
3D vectors	(NB. Section formula may not be the best approach!)	(Ex 13K)
Scalar Product (formula and component form)	6. 3D and basis vectors	(Ex 13L, 13M)
Angle between vectors	7. Extending rules to 3D	(Ex 13N)
Perpendicular vectors	8. Scalar product (both forms)	(Ex 13O, 13P)
Applications	9. Angle between vectors	(Ex 13Q)
Properties of the scalar product	10. Perpendicular vectors	(Ex 13R)
	11. Commutative & distributive laws for scalar product	(Ex 13U)
	(NB Ex 13S is well worth doing but may have to be left until after	the prelims)
14: Further Calculus	5 Periods	
Integration of $\sin x$ and $\cos x$	1. Integrating $\sin x$ and $\cos x$	(Ex 14C)
Derivative of $(x + a)^n$	2. Chain rule	(Ex 14H)
Derivative of $(ax + b)^n$	3. Applications of chain rule	(Ex 14I)
Chain rule	4. Integrating $(ax+b)^n$	(Ex 14J)
Applications		, ,,
Integrating $(ax + b)^n$	5. Integrating $\sin(ax+b)$ and $\cos(ax+b)$	(Ex 14K)
Integrating $\sin(ax + b)$ and $\cos(ax + b)$		
15: Exponential and Log	9 Periods	
Indices		
Exponential graphs	1. Revision of exponential & log graphs	(Teacher)

6. Natural logs	(Ex 15H)
7. Models of the form $y = kx^n$	(Ex 15I)
8. Models of the form $y = ab^x$	(Ex 15J)
9. Related graphs	(Ex 15K)
6 Periods	
1. Writing in form $k \cos(x-\alpha)$	(Ex 16D)
2. Writing in forms $k \cos(x + \alpha)$ and $k \sin(x \pm \alpha)$	(Ex 16E)
3. Wave function with multiple angles	
(Can be omitted for lower sections)	
4. Finding max and min of wave functions	(Ex 16G)
5. Solving equations involving wave functions	(Ex 16H)
•	 8. Models of the form y = ab^x 9. Related graphs 6 Periods 1. Writing in form k cos(x-α) 2. Writing in forms k cos(x+α) and k sin(x±α) 3. Wave function with multiple angles (Can be omitted for lower sections) 4. Finding max and min of wave functions