
Structure and Replication of DNA

- 1. The genetic material in human mitochondria is arranged as
 - A linear chromosomes
 - B circular plasmids
 - C circular chromosomes
 - D inner membranes.
- 3. The polymerase chain reaction (PCR) amplifies specific sequences of DNA.

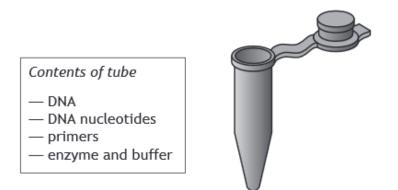
The flow chart shows how a sample of DNA was treated during a cycle of the PCR procedure.

(a) Explain the purpose of the different heat treatments in Stage 1 and Stage 2.

Stage 1 _____ Stage 2 _____

2

(b) The number of DNA molecules doubles during each cycle of the PCR procedure.


Caculate the number of cycles needed to produce 128 copies of a single DNA molecule.

Space for calculation

_____ cycles

9

(c) The diagram shows the contents of a tube used in PCR.

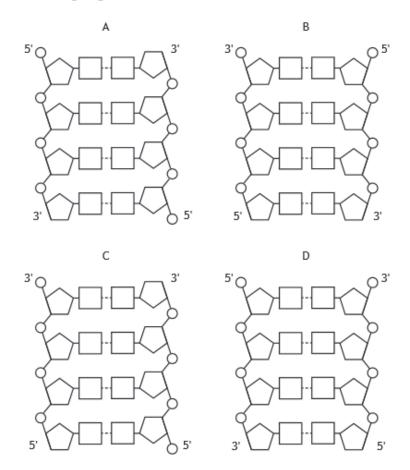
Describe the contents of a suitable control tube designed to show that primers are needed in the reaction.

1

1

1

(d) State one practical application of PCR.


A Describe DNA under the following headings.

- (i) Structure of DNA
- (ii) Replication of DNA

- A Write notes on DNA under the following headings.
 - (i) Organisation of DNA in prokaryotic and eukaryotic cells; 4

5

- (ii) The polymerase chain reaction (PCR).
- 1. Which of the following diagrams shows the correct structure of DNA?

2. A section of double stranded DNA was found to have 60 guanine bases and 30 adenine bases.

What is the total number of deoxyribose sugars in this section?

- A 30
- B 90
- C 180
- D 270

- 3. The following terms describe different structures into which DNA can be organised within cells.
 - 1 Linear chromosome
 - 2 Circular chromosome
 - 3 Circular plasmid

Which of these terms describe how DNA is organised within photosynthetic plant cells?

- A 1 only
- B 2 only
- C 1 and 2 only
- D 2 and 3 only
- 4. Which of the following molecules are required in the replication of the lagging strand of a DNA molecule?
 - A DNA polymerase and ligase only
 - B DNA polymerase and primers only
 - C Ligase and primers only
 - D DNA polymerase, ligase and primers
- (b) A scientist was planning to amplify DNA using PCR.
 State which DNA polymerase should be used and describe the advantage of using this polymerase.
 1
 DNA polymerase ______

Advantage _____

(c) Explain the importance of using heat-tolerant DNA polymerases in PCR. 1

1. The diagram below shows part of a DNA molecule before and after a mutation.

T C A G C A T T G	mutation TCAC	<u>cctt</u>
<u>A G T C G T A A C</u>	A G T C	<u> </u>
before	a	fter

The type of mutation shown is

- A deletion
- B substitution
- C insertion
- D inversion.
- 2. Which of the following are required in a polymerase chain reaction (PCR)?
 - A DNA polymerase, template strand and primers
 - B RNA polymerase, template strand and primers
 - C DNA polymerase, template strand and ligase
 - D RNA polymerase, ligase and primers
- 3. Each cycle of a polymerase chain reaction (PCR) takes 5 minutes.

If there are 1000 DNA fragments at the start of the reaction, how long will it take for the number of fragments produced by the reaction to be greater than 1 million?

- A 15 minutes
- B 35 minutes
- C 50 minutes
- D 55 minutes

2. DNA holds the genetic information in both prokaryotic and eukaryotic cells.

	 Describe one organisational difference between prokaryotic and eukaryotic chromosomal DNA.
(ii	i) Name the substance with which DNA is packaged in eukaryotes.
	te one location, other than the nucleus, where DNA is found ir karyotic cells.
	ring DNA replication two new daughter strands are synthesised using
	e original strands as templates. i) State why the antiparallel nature of the DNA molecule results ir
	5
(i	 State why the antiparallel nature of the DNA molecule results in