TEST PAPER I

I. If $x^3 + 4x^2 + x - t$ is divisible by (x + 2), find t and fully factorise the function.

2. If
$$\tan A = K$$
, prove that the exact value of $\cos 2A = \frac{1 - K^2}{1 + K^2}$

- 3. A circle has equation $x^2 + y^2 6x + 8y = 0$.
 - (a) State the centre and radius of the circle.
 - (b) Find the equation of the circle under reflection in the y-axis.

4. Solve for
$$x: \frac{2+x}{2} - (2-x) < 5$$
.

5. Find
$$f'\left(\frac{\pi}{6}\right)$$
 if $f(x) = 3 \sin 2x$.

In a right-angled triangle tan A = 1/2, show that cos A can be expressed in the form p√5 and state the exact value of p.

7. When
$$f(x) = (2x + \sqrt{x})^3$$
, find $f'(x)$ and $f'(4)$.

8. Find all the roots of the equation

$$x(x+2)(x^2-3)(x^2+1)(x^2-4), x \in \mathbb{R}.$$

State the answer in a solution set.

- 9. If h(x) = g(f(x)), find h(x) when f(x) = 2x 1 and $g(x) = -x^2 + x + 2$.
- 10. The diagram shows the sketch of the function f(x). Make a rough sketch of -f(x) and f(x) 2 (on two different sketches).

- 11. Given A = (-2, 3, 4), B = (-1, 5, 2) and C = (0, 1, 5), show that the cosine of angle BAC $= \frac{-4}{9}$ and comment on the type of angle.
- 12. (a) Using the method of completing the square, find the minimum value of $y = 3x^2 6x + 5$.
 - (b) Make a rough sketch of the curve showing the turning point and any axis intercepts.
 - (c) From your sketch, state the nature of the roots of the equation, giving an explanation.