TEST PAPER F

- 1. (a) Given that (x + 2) is a factor of $f(x) = x^3 3x^2 6x + 8$, fully factorise f(x).
 - (b) State the coordinates of the points where f(x) meets the axes. (To show that (x + 2) is a factor of f(x) show that f(-2) = 0 and factorise the function fully.)
- 2. (a) A is the point (1, -2, 4), B is the point (-2, 4, 1). P divides AB in the ratio 2: 1. Find the coordinates of P.
 - (b) State the ratio AP: BP.
- 3. The vertices of a triangle are L(2, 4), M(-1, -2) and N(3, 7). Find the equation of the altitude LQ.
- 4. (a) Find the coordinates of the centre and the length of the radius of the circle with equation $x^2 + y^2 6x + 8y + 9 = 0.$
 - (b) Find the equation of this circle after reflection in the x-axis.
- 5. Stationary values of the function $4x^3 + mx$ occur when $x = \pm \frac{\sqrt{3}}{2}$
 - (a) Find the value of m.
 - (b) State f(x) and find f(-2).
- 6. Find the value of $(2\sqrt{3} 5\sqrt{2})^2$.
- 7. If $f(x) = \frac{x^3 + 2x^2 3x 1}{3x^2}$ find f'(x).
- 8. $f(x) = x^3 5x^2 x + d$. If f(x) is divisible by (x + 1), find d and fully factorise the function.

- 9. (a) If $u_{r+1} = mu_r + c$ and $u_0 = 3$, $u_1 = 2$ and $u_2 = 4$, find m and c and state the relationship in the form $u_{r+1} = mu_r + c$.
 - (b) Find u_3 and u_{-1} .
 - (c) Find a value for u_r such that $u_{r+1} = u_r$.
- 10. (a) Find the value of p if $f(x) = 2x^2 + 6x + p$ has equal roots.
 - (b) State the coordinates of this root.
 - (c) Make a rough sketch of the curve showing clearly where f(x) meets the axes.
- 11. Evàluate $\int_{\pi/3}^{\pi/2} \sin x \, dx.$
- .12. Solve $4 \sin 2x 2 = 0$; 0 < x < 360.