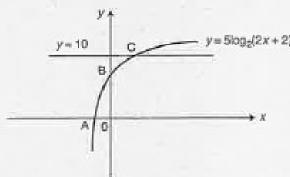
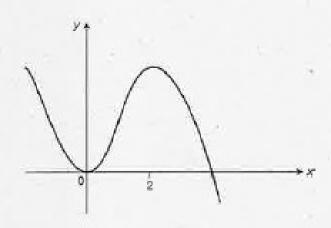
TEST PAPER C

 Find the coordinates of A, B and C when the equation of the curve is y = 5 log₂(2x + 2) and the equation of the line is y = 10.



- 2. Stationary values of the function $2x^3 + mx$ occur when $x = \pm 2$. Find the value of m. Hence state f(x) and f(-1).
- 3. (a) Find the coordinates of the centre and the length of the radius of the circle with equation $x^2 + y^2 2x + 6y + 1 = 0.$
 - (b) State the equation of the circle after reflection in the y-axis.
- The vertices of a triangle are A(-1, 3), B(2, -1) and C(5, 4).
 Find the equation of the altitude BQ.
- The graph of f(x) is shown.
 Make a rough sketch of f'(x).



- 6. (a) Given that (x + 1) is a factor of $f(x) = x^3 + 3x^2 13x 15$, fully factorise f(x).
 - (b) State the coordinates of the points where f(x) meets the axes.

- (a) A is the point (2, -1, 3), B is the point (1, 6, -4). P divides AB in the ratio 2: -3. Find the coordinates of P.
 - (b) State the ratios AB : PB and AB : BP.
- 8. (a) Using the method of completing the square, find the minimum value of $y = x^2 + 4x + 11$.
 - (b) Make a rough sketch of the curve showing the turning point and any axis intercepts.
 - (c) From your sketch, state the nature of the roots of the equation, giving an explanation.
- A certain sequence of numbers is defined by the recurrence relation u_{n+1} = 0·4u_n + 12.
 Explain why this sequence has a limit and find the limit of the sequence.
- 10. If the points (1, 2), (a, 4) and (b, 1) are collinear, show that a + 2b = 3.
- 11. If $\tan x = \frac{5}{12}$, $\tan y = \frac{3}{4}$. Show that $\cos (x y) \sin (x + y) = \frac{7}{65}$.
- 12. If $\int_{b}^{2} (3x^2 2) dx = 3$, find b.