N5 Scientific Notation - Solutions

1000g =
$$3.27 \times 10^{-22} = 3.058... \times 10^{24}$$

$$= 3.1 \times 10^{24} (2 \text{ sig figs}) \quad (3ku)$$

3.
$$\frac{2005}{\text{E}} \frac{\text{Paper 2}}{\text{OI}}$$

$$E = mc^{2}$$

$$E = 3.6 \times 10^{-2} \times (3 \times 10^{8})^{2} \text{ (3ku)}$$

$$E = 3.24 \times 10^{15} \text{ (3ku)}$$

Speed =
$$3 \times 10^8$$
 m/s

time = $8 \text{ hrs} = 8 \times 60 \times 60$

= 28800 seconds

Distance = $5 \times T$

= $3 \times 10^8 \times 28800$

= 8.64×10^{12} m (4ku)

5.
$$2002$$
 Paper 2 01
weight = 19.06 × 10⁻⁵ × 18 /
= 3.4306 × 10^{-3} kg /

(2KU)

.7. 2000 Paper 2 02

$$\% = \frac{1-41 \times 10^{18}}{5.97 \times 10^{21}} \times 100$$

(3 KM)

.8. 1999 Paper 2 0.2

= 2.4 ×10⁵ miles (sig figs)

(3KU)

(I mark for rounding, I for scientic notation)

19. 1998 Paper 2 Q1

1 year => 3.2 × 109

1 second => 3.2 × 109 = 365 = 24 = 60 = 60

perday per hr permin persec.

(2KU)

must be rounded correctly.

Distance = 50 million
$$\times (9.46 \times 10^{12})$$
 = $\frac{4.73 \times 10^{20} \text{ km}}{10^{12}}$

(must be rounded correctly.)

(4KU)

(4ku)

.12. 1992 Paper 1 0.4 (KU- use a caramator)

NP. red blood æus = 5500
$$\times (5 \times 10^9)$$
 \(= \frac{2.75 \times 10^{13}}{2.75 \times 10^{13}} \) (3ku)

· 13. 1990 Paper 1 0.5 (Ku- use a calculator)