Genetic Engineering

3. The diagram below represents a genetically engineered bacterial cell.

The structure labelled X is a

- A chromosome
- B plasmid
- C ribosome
- D nucleus.

3. Which row in the table identifies the order of stages involved in genetic engineering?

	Stage in Genetic Engineering			
	1st	2nd	3rd	4th
А	Required gene identified	Gene and plasmid extracted	Gene inserted into plasmid	Modified cells grown
В	Required gene identified	Gene inserted into plasmid	Gene and plasmid extracted	Modified cells grown
С	Gene inserted into plasmid	Required gene identified	Modified cells grown	Gene and plasmid extracted
D	Gene inserted into plasmid	Modified cells grown	Gene and plasmid extracted	Required gene identified

6. The flowchart represents some of the stages of genetic engineering.

A suitable description of stage X would be

- A insert bacterial plasmid into required gene
- B insert bacterial plasmid into source chromosome
- C insert required gene into host bacterial cell
- D insert required gene into bacterial plasmid.

3. The diagram below represents part of the process of genetic engineering.

(a) (i) Structure X is removed from the bacterium and modified during this process.

Name structure X.

(ii) The bacteria have an initial concentration of 1000 cells/cm3.

Each cell divides once every 30 minutes.

Calculate how long it will take for the concentration to become greater than 15 000 cells/cm³.

Space for calculation

_____ hours

1