Dynamics

3. Velocity-Time Graphs

Section A

1. Label each speed-time graph to describe the motion of the object.
$\xrightarrow{\text { ch }}$
${ }_{\text {b) }}{ }^{\text {v }}$

a)

Section B

1. Explain the difference between speed and velocity.
2. Explain how the distance travelled by an object can be calculate from the velocity-time graph.

3. As a car approaches a village the driver applies the brakes. The speed time graph of the car's motion is shown.

The brakes are applied for
A. 13 s
B. 20 s
C. 24 s
D. 36 s
E. 60 s

Firrhill High School	N4	Dynamics	N	N

1. A student uses a linear air track and a motion sensor to investigate a collision between two vehicles.

The motion sensor measures the speed of vehicle X every 0.01 s .
The graph shows the results obtained from the investigation after vehicle X has been released.

a) The motion sensor uses ultrasound waves. State the speed of ultrasound in air.
b) Describe the motion of vehicle X between points S and T.
c) Calculate the distance travelled by vehicle X between points S and T.
2. A rollercoaster cart starts at rest and increases in speed steadily by $2 \mathrm{~ms}^{-1}$ for 5 s . The cart then continues at a constant speed for 2 s before decreasing to rest in 3 s . The cart then moves backwards, increasing in speed by $1 \mathrm{~ms}^{-1}$ for 4 s .

Draw a velocity-time graph of this journey.
You should use the graph paper you took home.

