Tutorial 2.1

Angular Motion

- 1. Convert the following from degrees to radians: 30°, 45°, 60°, 90°, 180°, 270°, 360°, 720°.
- 2. Convert the following from radians to degrees: 1 rad, 10 rad, 0.1 rad, π rad, 2π rad, $\frac{\pi}{6}$ rad.
- 3. Convert the following from revolutions per minute to radians per second: 33 rpm, 45 rpm, 78 rpm, 300 rpm.
- 4. Using calculus notation write down the expression for
 - (a) the angular velocity in terms of the angular displacement
 - (b) the angular acceleration in terms of the angular velocity
 - (c) the angular acceleration in terms of the angular displacement.
- 5. State the three equations which can be used when an object moves with a constant angular acceleration, α .

State the meaning of each symbol used.

- 6. A disc is slowed uniformly at 5.0 rad s⁻² for 4.0 s. The initial angular velocity is 200 rad s⁻¹.
 - (a) Determine the angular velocity at the end of the four seconds.
 - (b) What is the angular displacement in this time?
- 7. The angular velocity of an engine is increased from 800 rpm to 3 000 rpm in 8.0 s.
 - (a) Determine the angular acceleration. You may assume this is uniform.
 - (b) Find the total angular displacement.
 - (c) How many revolutions does the engine make during this 8.0 s?
- 8. A wheel accelerates uniformly from rest at 3.0 rad s⁻² for 5.0 s.
 - (a) Find
 - (i) the final angular velocity after 5.0 s
 - (ii) the angular displacement after 5.0 s.
 - (b) The wheel has a radius of 1.50 m.Determine the linear velocity at a point on its rim at the end of the 5.0 s.
- 9. Radius of Earth = 6.4×10^3 km Geostationary orbit radius = 3.6×10^4 km Radius of Earth's orbit = 1.5×10^8 kmRadius of Moon's orbit = 3.8×10^5 km Period of Earth about Sun = 365 days Period of Moon about Earth = 28 days
 - (a) Calculate the angular velocity in rad s⁻¹ of
 - (i) the Earth about the sun
 - (ii) the Moon about the Earth
 - (iii) an object on the Earth's surface about its axis of rotation
 - (iv) a geostationary satellite.
 - (b) Find the tangential velocity in m s⁻¹ of each of the above quantities in part (a).
- 10. Derive the expression $v = r\omega$ for a particle in circular motion.